Java 类名:com.alibaba.alink.operator.batch.regression.XGBoostRegTrainBatchOp
Python 类名:XGBoostRegTrainBatchOp
功能介绍
XGBoost 组件是在开源社区的基础上进行包装,使功能和 PAI 更兼容,更易用。
XGBoost 算法在 Boosting 算法的基础上进行了扩展和升级,具有较好的易用性和鲁棒性,被广泛用在各种机器学习生产系统和竞赛领域。
当前支持分类,回归和排序。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | ||
| numRound | 树的棵树 | 树的棵树 | Integer | ✓ | ||
| alpha | L1正则项 | L1正则项 | Double | 1.0 | ||
| baseScore | Base score | Base score | Double | 0.5 | ||
| colSampleByLevel | 每个树列采样 | 每个树列采样 | Double | ✓ | 1.0 | |
| colSampleByNode | 每个结点列采样 | 每个结点采样 | Double | ✓ | 1.0 | |
| colSampleByTree | 每个树列采样 | 每个树列采样 | Double | ✓ | 1.0 | |
| eta | 学习率 | 学习率 | Double | 0.3 | ||
| featureCols | 特征列名数组 | 特征列名数组,默认全选 | String[] | ✓ | [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, |
代码示例
以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!
Python 代码
df = pd.DataFrame([[0, 1, 1.1, 1.0],[1, -2, 0.9, 2.0],[0, 100, -0.01, 3.0],[1, -99, 0.1, 4.0],[0, 1, 1.1, 5.0],[1, -2, 0.9, 6.0]])batchSource = BatchOperator.fromDataframe(df, schemaStr='y int, x1 double, x2 double, x3 double')streamSource = StreamOperator.fromDataframe(df, schemaStr='y int, x1 double, x2 double, x3 double')trainOp = XGBoostRegTrainBatchOp()\.setNumRound(1)\.setPluginVersion('1.5.1')\.setLabelCol('y')\.linkFrom(batchSource)predictBatchOp = XGBoostRegPredictBatchOp()\.setPredictionCol('pred')\.setPluginVersion('1.5.1')predictStreamOp = XGBoostRegPredictStreamOp(trainOp)\.setPredictionCol('pred')\.setPluginVersion('1.5.1')predictBatchOp.linkFrom(trainOp, batchSource).print()predictStreamOp.linkFrom(streamSource).print()StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.regression.XGBoostRegPredictBatchOp;import com.alibaba.alink.operator.batch.regression.XGBoostRegTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.regression.XGBoostRegPredictStreamOp;import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class XGBoostRegTrainBatchOpTest {@Testpublic void testXGBoostTrainBatchOp() throws Exception {List <Row> data = Arrays.asList(Row.of(0, 1, 1.1, 1.0),Row.of(1, -2, 0.9, 2.0),Row.of(0, 100, -0.01, 3.0),Row.of(1, -99, 0.1, 4.0),Row.of(0, 1, 1.1, 5.0),Row.of(1, -2, 0.9, 6.0));BatchOperator <?> batchSource = new MemSourceBatchOp(data, "y int, x1 int, x2 double, x3 double");StreamOperator <?> streamSource = new MemSourceStreamOp(data, "y int, x1 int, x2 double, x3 double");BatchOperator <?> trainOp = new XGBoostRegTrainBatchOp().setNumRound(1).setPluginVersion("1.5.1").setLabelCol("y").linkFrom(batchSource);BatchOperator <?> predictBatchOp = new XGBoostRegPredictBatchOp().setPredictionCol("pred").setPluginVersion("1.5.1");StreamOperator <?> predictStreamOp = new XGBoostRegPredictStreamOp(trainOp).setPredictionCol("pred").setPluginVersion("1.5.1");predictBatchOp.linkFrom(trainOp, batchSource).print();predictStreamOp.linkFrom(streamSource).print();StreamOperator.execute();}}
