Java 类名:com.alibaba.alink.operator.batch.recommendation.NegativeItemSamplingBatchOp
Python 类名:NegativeItemSamplingBatchOp
功能介绍
当给定user-item pair数据的时候,为数据生成若干负样本数据,构成训练数据。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| samplingFactor | 采样因子 | 采样因子 | Integer | | | 3 |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df_data = pd.DataFrame([[1, 1],[2, 2],[2, 3],[4, 1],[4, 2],[4, 3],])data = BatchOperator.fromDataframe(df_data, schemaStr='user bigint, item bigint')NegativeItemSamplingBatchOp().linkFrom(data).print()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.recommendation.NegativeItemSamplingBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class NegativeItemSamplingBatchOpTest {@Testpublic void testNegativeItemSamplingBatchOp() throws Exception {List <Row> df_data = Arrays.asList(Row.of(1, 1),Row.of(2, 2),Row.of(2, 3),Row.of(4, 1),Row.of(4, 2),Row.of(4, 3));BatchOperator <?> data = new MemSourceBatchOp(df_data, "user int, item int");new NegativeItemSamplingBatchOp().linkFrom(data).print();}}
运行结果
| user | item | label | | —- | —- | —- |
| 2 | 1 | 0 |
| 1 | 3 | 0 |
| 4 | 1 | 1 |
| 4 | 2 | 1 |
| 1 | 3 | 0 |
| 2 | 1 | 0 |
| 2 | 1 | 0 |
| 4 | 3 | 1 |
| 2 | 2 | 1 |
| 2 | 3 | 1 |
| 2 | 1 | 0 |
| 1 | 1 | 1 |
| 2 | 1 | 0 |
| 1 | 3 | 0 |
| 2 | 1 | 0 |
