Java 类名:com.alibaba.alink.operator.stream.regression.IsotonicRegPredictStreamOp
Python 类名:IsotonicRegPredictStreamOp
功能介绍
保序回归在观念上是寻找一组非递减的片段连续线性函数(piecewise linear continuous functions),即保序函数,使其与样本尽可能的接近。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | | | null |
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | | | 10 |
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([[0.35, 1],[0.6, 1],[0.55, 1],[0.5, 1],[0.18, 0],[0.1, 1],[0.8, 1],[0.45, 0],[0.4, 1],[0.7, 0],[0.02, 1],[0.3, 0],[0.27, 1],[0.2, 0],[0.9, 1]])data = BatchOperator.fromDataframe(df, schemaStr="label double, feature double")dataStream = StreamOperator.fromDataframe(df, schemaStr="label double, feature double")trainOp = IsotonicRegTrainBatchOp()\.setFeatureCol("feature")\.setLabelCol("label")model = trainOp.linkFrom(data)predictOp = IsotonicRegPredictStreamOp(model)\.setPredictionCol("result")predictOp.linkFrom(dataStream).print()StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.regression.IsotonicRegTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.regression.IsotonicRegPredictStreamOp;import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class IsotonicRegPredictStreamOpTest {@Testpublic void testIsotonicRegPredictStreamOp() throws Exception {List <Row> df = Arrays.asList(Row.of(0.35, 1.0),Row.of(0.6, 1.0),Row.of(0.55, 1.0),Row.of(0.5, 1.0),Row.of(0.18, 0.0),Row.of(0.1, 1.0),Row.of(0.8, 1.0),Row.of(0.45, 0.0),Row.of(0.4, 1.0),Row.of(0.7, 0.0),Row.of(0.02, 1.0),Row.of(0.3, 0.0),Row.of(0.27, 1.0),Row.of(0.2, 0.0),Row.of(0.9, 1.0));BatchOperator <?> data = new MemSourceBatchOp(df, "feature double, label double");StreamOperator <?> dataStream = new MemSourceStreamOp(df, "feature double, label double");BatchOperator <?> trainOp = new IsotonicRegTrainBatchOp().setFeatureCol("feature").setLabelCol("label");BatchOperator <?> model = trainOp.linkFrom(data);StreamOperator <?> predictOp = new IsotonicRegPredictStreamOp(model).setPredictionCol("result");predictOp.linkFrom(dataStream).print();StreamOperator.execute();}}
运行结果
模型结果
| model_id | model_info | | —- | —- |
| 0 | {“vectorCol”:””col2””,”featureIndex”:”0”,”featureCol”:null} |
| 1048576 | [0.02,0.3,0.35,0.45,0.5,0.7] |
| 2097152 | [0.5,0.5,0.6666666865348816,0.6666666865348816,0.75,0.75] |
预测结果
| col1 | col2 | col3 | pred | | —- | —- | —- | —- |
| 1.0 | 0.9 | 1.0 | 0.75 |
| 0.0 | 0.7 | 1.0 | 0.75 |
| 1.0 | 0.35 | 1.0 | 0.6666666865348816 |
| 1.0 | 0.02 | 1.0 | 0.5 |
| 1.0 | 0.27 | 1.0 | 0.5 |
| 1.0 | 0.5 | 1.0 | 0.75 |
| 0.0 | 0.18 | 1.0 | 0.5 |
| 0.0 | 0.45 | 1.0 | 0.6666666865348816 |
| 1.0 | 0.8 | 1.0 | 0.75 |
| 1.0 | 0.6 | 1.0 | 0.75 |
| 1.0 | 0.4 | 1.0 | 0.6666666865348816 |
| 0.0 | 0.3 | 1.0 | 0.5 |
| 1.0 | 0.55 | 1.0 | 0.75 |
| 0.0 | 0.2 | 1.0 | 0.5 |
| 1.0 | 0.1 | 1.0 | 0.5 |
