Java 类名:com.alibaba.alink.operator.stream.onlinelearning.FtrlPredictStreamOp
Python 类名:FtrlPredictStreamOp
功能介绍
实时更新ftrl 训练得到的模型流,并使用实时的模型对实时的数据进行预测。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
代码示例
以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!
Python 代码
trainData0 = RandomTableSourceBatchOp() \.setNumCols(5) \.setNumRows(100) \.setOutputCols(["f0", "f1", "f2", "f3", "label"]) \.setOutputColConfs("label:weight_set(1.0,1.0,2.0,5.0)")model = LogisticRegressionTrainBatchOp() \.setFeatureCols(["f0", "f1", "f2", "f3"]) \.setLabelCol("label") \.setMaxIter(10).linkFrom(trainData0)trainData1 = RandomTableSourceStreamOp() \.setNumCols(5) \.setMaxRows(10000) \.setOutputCols(["f0", "f1", "f2", "f3", "label"]) \.setOutputColConfs("label:weight_set(1.0,1.0,2.0,5.0)") \.setTimePerSample(0.1)models = FtrlTrainStreamOp(model, None) \.setFeatureCols(["f0", "f1", "f2", "f3"]) \.setLabelCol("label") \.setTimeInterval(10) \.setAlpha(0.1) \.setBeta(0.1) \.setL1(0.1) \.setL2(0.1)\.setVectorSize(4)\.setWithIntercept(True) \.linkFrom(trainData1)FtrlPredictStreamOp(model) \.setPredictionCol("pred") \.setReservedCols(["label"]) \.setPredictionDetailCol("details") \.linkFrom(models, trainData1).print()StreamOperator.execute()
Java 代码
package com.alibaba.alink.operator.stream.ml.onlinelearning;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.classification.LogisticRegressionTrainBatchOp;import com.alibaba.alink.operator.batch.source.RandomTableSourceBatchOp;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.onlinelearning.FtrlPredictStreamOp;import com.alibaba.alink.operator.stream.onlinelearning.FtrlTrainStreamOp;import com.alibaba.alink.operator.stream.source.RandomTableSourceStreamOp;import org.junit.Test;public class FtrlTrainTestTest {@Testpublic void FtrlClassification() throws Exception {StreamOperator.setParallelism(2);BatchOperator trainData0 = new RandomTableSourceBatchOp().setNumCols(5).setNumRows(100L).setOutputCols(new String[]{"f0", "f1", "f2", "f3", "label"}).setOutputColConfs("label:weight_set(1.0,1.0,2.0,5.0)");BatchOperator model = new LogisticRegressionTrainBatchOp().setFeatureCols(new String[]{"f0", "f1", "f2", "f3"}).setLabelCol("label").setMaxIter(10).linkFrom(trainData0);StreamOperator trainData1 = new RandomTableSourceStreamOp().setNumCols(5).setMaxRows(1000L).setOutputCols(new String[]{"f0", "f1", "f2", "f3", "label"}).setOutputColConfs("label:weight_set(1.0,1.0,2.0,5.0)").setTimePerSample(0.1);StreamOperator smodel = new FtrlTrainStreamOp(model).setFeatureCols(new String[]{"f0", "f1", "f2", "f3"}).setLabelCol("label").setTimeInterval(10).setAlpha(0.1).setBeta(0.1).setL1(0.1).setL2(0.1).setVectorSize(4).setWithIntercept(true).linkFrom(trainData1);new FtrlPredictStreamOp(model).setPredictionCol("pred").setReservedCols(new String[]{"label"}).setPredictionDetailCol("details").linkFrom(smodel, trainData1).print();StreamOperator.execute();}}
运行结果
| label | pred | details | | —- | —- | —- |
| 2.0000 | 2.0000 | {“2.0”:”0.8407811313273308”,”1.0”:”0.1592188686726692”} |
| 2.0000 | 2.0000 | {“2.0”:”0.8094960632541983”,”1.0”:”0.19050393674580168”} |
| 2.0000 | 2.0000 | {“2.0”:”0.8685396820088952”,”1.0”:”0.1314603179911048”} |
| 2.0000 | 2.0000 | {“2.0”:”0.781050184076571”,”1.0”:”0.218949815923429”} |
| 1.0000 | 2.0000 | {“2.0”:”0.8347637657816113”,”1.0”:”0.16523623421838873”} |
| 2.0000 | 2.0000 | {“2.0”:”0.9211808843291631”,”1.0”:”0.07881911567083688”} |
