Java 类名:com.alibaba.alink.operator.batch.feature.QuantileDiscretizerTrainBatchOp
Python 类名:QuantileDiscretizerTrainBatchOp
功能介绍
分位点离散可以计算选定列的分位点,然后使用这些分位点进行离散化。
生成选中列对应的q-quantile,其中可以所有列指定一个,也可以每一列对应一个
编码结果
Encode ——> INDEX
预测结果为单个token的index
Encode ——> VECTOR
预测结果为稀疏向量:
1. dropLast为true,向量中非零元个数为0或者12. dropLast为false,向量中非零元个数必定为1
Encode ——> ASSEMBLED_VECTOR
预测结果为稀疏向量,是预测选择列中,各列预测为VECTOR时,按照选择顺序ASSEMBLE的结果。
向量维度
Encode ——> Vector
numBuckets: 训练参数dropLast: 预测参数handleInvalid: 预测参数
Token index
Encode ——> Vector
1. 正常数据: 唯一的非零元为数据所在的bucket,若 dropLast为true, 最大的bucket的值会被丢掉,预测结果为全零元2. null:2.1 handleInvalid为keep: 唯一的非零元为:numBuckets - dropLast(true: 1, false: 0)2.2 handleInvalid为skip: null2.3 handleInvalid为error: 报错
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | |
| leftOpen | 是否左开右闭 | 左开右闭为true,左闭右开为false | Boolean | true | ||
| numBuckets | quantile个数 | quantile个数,对所有列有效。 | Integer | 2 | ||
| numBucketsArray | quantile个数 | quantile个数,每一列对应数组中一个元素。 | Integer[] | null |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([["a", 1, 1, 2.0, True],["c", 1, 2, -3.0, True],["a", 2, 2, 2.0, False],["c", 0, 0, 0.0, False]])batchSource = BatchOperator.fromDataframe(df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean')streamSource = StreamOperator.fromDataframe(df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean')trainOp = QuantileDiscretizerTrainBatchOp()\.setSelectedCols(['f_double'])\.setNumBuckets(8)\.linkFrom(batchSource)predictBatchOp = QuantileDiscretizerPredictBatchOp()\.setSelectedCols(['f_double'])predictStreamOp = QuantileDiscretizerPredictStreamOp(trainOp)\.setSelectedCols(['f_double'])predictBatchOp.linkFrom(trainOp, batchSource).print()predictStreamOp.linkFrom(streamSource) .print()StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.feature.QuantileDiscretizerPredictBatchOp;import com.alibaba.alink.operator.batch.feature.QuantileDiscretizerTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.feature.QuantileDiscretizerPredictStreamOp;import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class QuantileDiscretizerTrainBatchOpTest {@Testpublic void testQuantileDiscretizerTrainBatchOp() throws Exception {List <Row> df = Arrays.asList(Row.of("a", 1, 1, 2.0, true),Row.of("c", 1, 2, -3.0, true),Row.of("a", 2, 2, 2.0, false),Row.of("c", 0, 0, 0.0, false));BatchOperator <?> batchSource = new MemSourceBatchOp(df,"f_string string, f_long int, f_int int, f_double double, f_boolean boolean");StreamOperator <?> streamSource = new MemSourceStreamOp(df,"f_string string, f_long int, f_int int, f_double double, f_boolean boolean");BatchOperator <?> trainOp = new QuantileDiscretizerTrainBatchOp().setSelectedCols("f_double").setNumBuckets(8).linkFrom(batchSource);BatchOperator <?> predictBatchOp = new QuantileDiscretizerPredictBatchOp().setSelectedCols("f_double");predictBatchOp.linkFrom(trainOp, batchSource).print();StreamOperator <?> predictStreamOp = new QuantileDiscretizerPredictStreamOp(trainOp).setSelectedCols("f_double");predictStreamOp.linkFrom(streamSource).print();StreamOperator.execute();}}
运行结果
| f_string | f_long | f_int | f_double | f_boolean | | —- | —- | —- | —- | —- |
| a | 1 | 1 | 2 | true |
| c | 1 | 2 | 0 | true |
| a | 2 | 2 | 2 | false |
| c | 0 | 0 | 1 | false |
