Java 类名:com.alibaba.alink.operator.batch.outlier.IForestModelOutlierTrainBatchOp
Python 类名:IForestModelOutlierTrainBatchOp
功能介绍
iForest 可以识别数据中异常点,在异常检测领域有比较好的效果。算法使用 sub-sampling 方法,降低了算法的计算复杂度。
文献或出处
- Isolation Forest
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| featureCols | 特征列名数组 | 特征列名数组,默认全选 | String[] | | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | null |
| numTrees | 模型中树的棵数 | 模型中树的棵数 | Integer | | | 100 |
| subsamplingSize | 每棵树的样本采样行数 | 每棵树的样本采样行数,默认 256 ,最小 2 ,最大 100000 . | Integer | | [1, 100000] | 256 |
| tensorCol | tensor列 | tensor列 | String | | 所选列类型为 [BOOL_TENSOR, BYTE_TENSOR, DOUBLE_TENSOR, FLOAT_TENSOR, INT_TENSOR, LONG_TENSOR, STRING, STRING_TENSOR, TENSOR, UBYTE_TENSOR] | null |
| vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null |
代码示例
Python 代码
import pandas as pddf = pd.DataFrame([[0.73, 0],[0.24, 0],[0.63, 0],[0.55, 0],[0.73, 0],[0.41, 0]])dataOp = BatchOperator.fromDataframe(df, schemaStr='val double, label int')trainOp = IForestModelOutlierTrainBatchOp()\.setFeatureCols(["val"])predOp = IForestModelOutlierPredictBatchOp()\.setOutlierThreshold(3.0)\.setPredictionCol("pred")\.setPredictionDetailCol("pred_detail")predOp.linkFrom(trainOp.linkFrom(dataOp), dataOp)evalOp = EvalOutlierBatchOp()\.setLabelCol("label")\.setPredictionDetailCol("pred_detail")\.setOutlierValueStrings(["1"]);metrics = predOp\.link(evalOp)\.collectMetrics()print(metrics)
Java 代码
package com.alibaba.alink.operator.batch.outlier;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.evaluation.EvalOutlierBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.common.evaluation.OutlierMetrics;import com.alibaba.alink.testutil.AlinkTestBase;import org.junit.Assert;import org.junit.Test;public class IForestModelOutlierTrainBatchOpTest extends AlinkTestBase {@Testpublic void test() {BatchOperator <?> data = new MemSourceBatchOp(new Object[][] {{0.73, 0},{0.24, 0},{0.63, 0},{0.55, 0},{0.73, 0},{0.41, 0},},new String[]{"val", "label"});IForestModelOutlierTrainBatchOp trainOp = new IForestModelOutlierTrainBatchOp().setFeatureCols("val");IForestModelOutlierPredictBatchOp predOp = new IForestModelOutlierPredictBatchOp().setOutlierThreshold(3.0).setPredictionCol("pred").setPredictionDetailCol("pred_detail");predOp.linkFrom(trainOp.linkFrom(data), data);EvalOutlierBatchOp eval = new EvalOutlierBatchOp().setLabelCol("label").setPredictionDetailCol("pred_detail").setOutlierValueStrings("1");OutlierMetrics metrics = predOp.link(eval).collectMetrics();Assert.assertEquals(1.0, metrics.getAccuracy(), 10e-6);}}
运行结果
———————————————— Metrics: ————————————————
Outlier values: [1] Normal values: [0]
Auc:NaN Accuracy:1 Precision:1 Recall:0 F1:0
| Pred\Real | Outlier | Normal | | —- | —- | —- |
| Outlier | 0 | 0 |
| Normal | 0 | 6 |
