Java 类名:com.alibaba.alink.operator.batch.dataproc.vector.VectorMaxAbsScalerPredictBatchOp
Python 类名:VectorMaxAbsScalerPredictBatchOp
功能介绍
vector绝对值最大标准化是对vector数据按照最大值和最小值进行标准化的组件, 将数据归一到-1和1之间。
预测组件使用 VectorMaxAbsScalerTrainBatchOp 训练生成的模型,处理数据之后生成结果数据。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
| outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([["a", "10.0, 100"],["b", "-2.5, 9"],["c", "100.2, 1"],["d", "-99.9, 100"],["a", "1.4, 1"],["b", "-2.2, 9"],["c", "100.9, 1"]])data = BatchOperator.fromDataframe(df, schemaStr="col string, vec string")trainOp = VectorMaxAbsScalerTrainBatchOp()\.setSelectedCol("vec")model = trainOp.linkFrom(data)batchPredictOp = VectorMaxAbsScalerPredictBatchOp()batchPredictOp.linkFrom(model, data).print()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.dataproc.vector.VectorMaxAbsScalerPredictBatchOp;import com.alibaba.alink.operator.batch.dataproc.vector.VectorMaxAbsScalerTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class VectorMaxAbsScalerPredictBatchOpTest {@Testpublic void testVectorMaxAbsScalerPredictBatchOp() throws Exception {List <Row> df = Arrays.asList(Row.of("a", "10.0, 100"),Row.of("b", "-2.5, 9"),Row.of("c", "100.2, 1"),Row.of("d", "-99.9, 100"),Row.of("a", "1.4, 1"),Row.of("b", "-2.2, 9"),Row.of("c", "100.9, 1"));BatchOperator <?> data = new MemSourceBatchOp(df, "col string, vec string");BatchOperator <?> trainOp = new VectorMaxAbsScalerTrainBatchOp().setSelectedCol("vec");BatchOperator <?> model = trainOp.linkFrom(data);BatchOperator <?> batchPredictOp = new VectorMaxAbsScalerPredictBatchOp();batchPredictOp.linkFrom(model, data).print();}}
运行结果
| col | vec | | —- | —- |
| a | 0.09910802775024777 1.0 |
| b | -0.024777006937561942 0.09 |
| c | 0.9930624380574826 0.01 |
| d | -0.9900891972249752 1.0 |
| a | 0.013875123885034686 0.01 |
| b | -0.02180376610505451 0.09 |
| c | 1.0 0.01 |
