Java 类名:com.alibaba.alink.operator.stream.timeseries.AutoArimaStreamOp
Python 类名:AutoArimaStreamOp
功能介绍
给定分组,对每一组的数据进行AutoArima时间序列预测,给出下一时间段的结果。
算法原理
Arima全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出一著名时间序列预测方法,所以又称为box-jenkins模型、博克思-詹金斯法.
Arima 详细介绍请见链接 https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
AutoArima是只需要指定MaxOrder, 不需要指定p/d/q, 对每个分组分别计算出最优的参数,给出预测结果。
使用方式
参考文档 https://www.yuque.com/pinshu/alink_guide/xbp5ky
参数说明
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)import time, datetimeimport numpy as npimport pandas as pddata = pd.DataFrame([[1, datetime.datetime.fromtimestamp(1001), 10.0],[1, datetime.datetime.fromtimestamp(1002), 11.0],[1, datetime.datetime.fromtimestamp(1003), 12.0],[1, datetime.datetime.fromtimestamp(1004), 13.0],[1, datetime.datetime.fromtimestamp(1005), 14.0],[1, datetime.datetime.fromtimestamp(1006), 15.0],[1, datetime.datetime.fromtimestamp(1007), 16.0],[1, datetime.datetime.fromtimestamp(1008), 17.0],[1, datetime.datetime.fromtimestamp(1009), 18.0],[1, datetime.datetime.fromtimestamp(1010), 19.0]])source = dataframeToOperator(data, schemaStr='id int, ts timestamp, val double', op_type='stream')source.link(OverCountWindowStreamOp().setGroupCols(["id"]).setTimeCol("ts").setPrecedingRows(5).setClause("mtable_agg_preceding(ts, val) as data")).link(AutoArimaStreamOp().setValueCol("data").setPredictionCol("predict").setMaxOrder(1).setPredictNum(4)).link(LookupValueInTimeSeriesStreamOp().setTimeCol("ts").setTimeSeriesCol("predict").setOutputCol("out")).print()StreamOperator.execute()
Java 代码
package com.alibaba.alink.operator.stream.timeseries;import org.apache.flink.types.Row;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.feature.OverCountWindowStreamOp;import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;import com.alibaba.alink.testutil.AlinkTestBase;import org.junit.Test;import java.sql.Timestamp;import java.util.Arrays;import java.util.List;public class AutoArimaStreamOpTest extends AlinkTestBase {@Testpublic void test() throws Exception {List <Row> mTableData = Arrays.asList(Row.of(1, new Timestamp(1), 10.0),Row.of(1, new Timestamp(2), 11.0),Row.of(1, new Timestamp(3), 12.0),Row.of(1, new Timestamp(4), 13.0),Row.of(1, new Timestamp(5), 14.0),Row.of(1, new Timestamp(6), 15.0),Row.of(1, new Timestamp(7), 16.0),Row.of(1, new Timestamp(8), 17.0),Row.of(1, new Timestamp(9), 18.0),Row.of(1, new Timestamp(10), 19.0));MemSourceStreamOp source = new MemSourceStreamOp(mTableData, new String[] {"id", "ts", "val"});source.link(new OverCountWindowStreamOp().setGroupCols("id").setTimeCol("ts").setPrecedingRows(5).setClause("mtable_agg(ts, val) as data")).link(new AutoArimaStreamOp().setGroupCol("id").setValueCol("data").setPredictionCol("predict").setPredictNum(12)).link(new LookupValueInTimeSeriesStreamOp().setTimeCol("ts").setTimeSeriesCol("predict").setOutputCol("out")).print();StreamOperator.execute();}}
运行结果
| id | ts | val | data | predict | out | | —- | —- | —- | —- | —- | —- |
| 1 | 1970-01-01 08:00:00.001 | 10.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.001”],”val”:[10.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null | null |
| 1 | 1970-01-01 08:00:00.002 | 11.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.001”,”1970-01-01 08:00:00.002”],”val”:[10.0,11.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | {“data”:{“ts”:[“1970-01-01 08:00:00.003”,”1970-01-01 08:00:00.004”,”1970-01-01 08:00:00.005”,”1970-01-01 08:00:00.006”,”1970-01-01 08:00:00.007”,”1970-01-01 08:00:00.008”,”1970-01-01 08:00:00.009”,”1970-01-01 08:00:00.01”,”1970-01-01 08:00:00.011”,”1970-01-01 08:00:00.012”,”1970-01-01 08:00:00.013”,”1970-01-01 08:00:00.014”],”val”:[11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null |
| 1 | 1970-01-01 08:00:00.003 | 12.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.001”,”1970-01-01 08:00:00.002”,”1970-01-01 08:00:00.003”],”val”:[10.0,11.0,12.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null | null |
| 1 | 1970-01-01 08:00:00.004 | 13.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.001”,”1970-01-01 08:00:00.002”,”1970-01-01 08:00:00.003”,”1970-01-01 08:00:00.004”],”val”:[10.0,11.0,12.0,13.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null | null |
| 1 | 1970-01-01 08:00:00.005 | 14.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.001”,”1970-01-01 08:00:00.002”,”1970-01-01 08:00:00.003”,”1970-01-01 08:00:00.004”,”1970-01-01 08:00:00.005”],”val”:[10.0,11.0,12.0,13.0,14.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null | null |
| 1 | 1970-01-01 08:00:00.006 | 15.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.001”,”1970-01-01 08:00:00.002”,”1970-01-01 08:00:00.003”,”1970-01-01 08:00:00.004”,”1970-01-01 08:00:00.005”,”1970-01-01 08:00:00.006”],”val”:[10.0,11.0,12.0,13.0,14.0,15.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null | null |
| 1 | 1970-01-01 08:00:00.007 | 16.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.002”,”1970-01-01 08:00:00.003”,”1970-01-01 08:00:00.004”,”1970-01-01 08:00:00.005”,”1970-01-01 08:00:00.006”,”1970-01-01 08:00:00.007”],”val”:[11.0,12.0,13.0,14.0,15.0,16.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null | null |
| 1 | 1970-01-01 08:00:00.008 | 17.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.003”,”1970-01-01 08:00:00.004”,”1970-01-01 08:00:00.005”,”1970-01-01 08:00:00.006”,”1970-01-01 08:00:00.007”,”1970-01-01 08:00:00.008”],”val”:[12.0,13.0,14.0,15.0,16.0,17.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null | null |
| 1 | 1970-01-01 08:00:00.009 | 18.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.004”,”1970-01-01 08:00:00.005”,”1970-01-01 08:00:00.006”,”1970-01-01 08:00:00.007”,”1970-01-01 08:00:00.008”,”1970-01-01 08:00:00.009”],”val”:[13.0,14.0,15.0,16.0,17.0,18.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null | null |
| 1 | 1970-01-01 08:00:00.01 | 19.0000 | {“data”:{“ts”:[“1970-01-01 08:00:00.005”,”1970-01-01 08:00:00.006”,”1970-01-01 08:00:00.007”,”1970-01-01 08:00:00.008”,”1970-01-01 08:00:00.009”,”1970-01-01 08:00:00.01”],”val”:[14.0,15.0,16.0,17.0,18.0,19.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | null | null |
