Java 类名:com.alibaba.alink.operator.batch.recommendation.FmUsersPerItemRecommBatchOp
Python 类名:FmUsersPerItemRecommBatchOp
功能介绍
使用Fm推荐模型,为item推荐user list。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| itemCol | Item列列名 | Item列列名 | String | ✓ | | |
| recommCol | 推荐结果列名 | 推荐结果列名 | String | ✓ | | |
| excludeKnown | 排除已知的关联 | 推荐结果中是否排除训练数据中已知的关联 | Boolean | | | false |
| initRecommCol | 初始推荐列列名 | 初始推荐列列名 | String | | 所选列类型为 [M_TABLE] | null |
| k | 推荐TOP数量 | 推荐TOP数量 | Integer | | | 10 |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df_data = pd.DataFrame([[1, 1, 0.6],[2, 2, 0.8],[2, 3, 0.6],[4, 1, 0.6],[4, 2, 0.3],[4, 3, 0.4],])data = BatchOperator.fromDataframe(df_data, schemaStr='user bigint, item bigint, rating double')model = FmRecommTrainBatchOp()\.setUserCol("user")\.setItemCol("item")\.setNumFactor(20)\.setRateCol("rating").linkFrom(data);predictor = FmRateRecommBatchOp()\.setUserCol("user")\.setItemCol("item")\.setRecommCol("prediction_result");predictor.linkFrom(model, data).print()model = FmRecommTrainBatchOp()\.setUserCol("user")\.setItemCol("item")\.setNumFactor(20)\.setRateCol("rating").linkFrom(data);predictor = FmUsersPerItemRecommBatchOp()\.setItemCol("user")\.setK(1).setReservedCols(["item"])\.setRecommCol("prediction_result");predictor.linkFrom(model, data).print()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.recommendation.FmRateRecommBatchOp;import com.alibaba.alink.operator.batch.recommendation.FmRecommTrainBatchOp;import com.alibaba.alink.operator.batch.recommendation.FmUsersPerItemRecommBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class FmUsersPerItemRecommBatchOpTest {@Testpublic void testFmUsersPerItemRecommBatchOp() throws Exception {List <Row> df_data = Arrays.asList(Row.of(1, 1, 0.6),Row.of(2, 2, 0.8),Row.of(2, 3, 0.6),Row.of(4, 1, 0.6),Row.of(4, 2, 0.3),Row.of(4, 3, 0.4));BatchOperator <?> data = new MemSourceBatchOp(df_data, "user int, item int, rating double");BatchOperator <?> model = new FmRecommTrainBatchOp().setUserCol("user").setItemCol("item").setNumFactor(20).setRateCol("rating").linkFrom(data);BatchOperator <?> predictor = new FmRateRecommBatchOp().setUserCol("user").setItemCol("item").setRecommCol("prediction_result");predictor.linkFrom(model, data).print();model = new FmRecommTrainBatchOp().setUserCol("user").setItemCol("item").setNumFactor(20).setRateCol("rating").linkFrom(data);predictor = new FmUsersPerItemRecommBatchOp().setItemCol("user").setK(1).setReservedCols("item").setRecommCol("prediction_result");predictor.linkFrom(model, data).print();}}
运行结果
| item | prediction_result | | —- | —- |
| 1 | {“object”:”[1]”,”rate”:”[0.5829579830169678]”} |
| 2 | {“object”:”[2]”,”rate”:”[0.576914370059967]”} |
| 3 | {“object”:”[1]”,”rate”:”[0.5055253505706787]”} |
| 1 | {“object”:”[1]”,”rate”:”[0.5829579830169678]”} |
| 2 | {“object”:”[2]”,”rate”:”[0.576914370059967]”} |
| 3 | {“object”:”[1]”,”rate”:”[0.5055253505706787]”} |
