Java 类名:com.alibaba.alink.operator.batch.tensorflow.TFTableModelPredictBatchOp
Python 类名:TFTableModelPredictBatchOp
功能介绍
使用 TFTableModelTrainBatchOp 或者 TF2TableModelTrainBatchOp 训练产生的模型进行预测。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| outputSchemaStr | Schema | Schema。格式为”colname coltype[, colname2, coltype2[, …]]”,例如 “f0 string, f1 bigint, f2 double” | String | ✓ | | |
| graphDefTag | graph标签 | graph标签 | String | | | “serve” |
| inputSignatureDefs | 输入 SignatureDef | SavedModel 模型的输入 SignatureDef 名,用逗号分隔,需要与输入列一一对应,默认与选择列相同 | String[] | | | null |
| intraOpParallelism | Op 间并发度 | Op 间并发度 | Integer | | | 4 |
| outputSignatureDefs | TF 输出 SignatureDef 名 | 模型的输出 SignatureDef 名,多个输出时用逗号分隔,并且与输出 Schema 一一对应,默认与输出 Schema 中的列名相同 | String[] | | | null |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| selectedCols | 选中的列名数组 | 计算列对应的列名列表 | String[] | | | null |
| signatureDefKey | signature标签 | signature标签 | String | | | “serving_default” |
代码示例
以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!
Python 代码
import jsonsource = RandomTableSourceBatchOp() \.setNumRows(100) \.setNumCols(10)colNames = source.getColNames()source = source.select("*, case when RAND() > 0.5 then 1. else 0. end as label")label = "label"userParams = {'featureCols': json.dumps(colNames),'labelCol': label,'batch_size': 16,'num_epochs': 1}tfTableModelTrainBatchOp = TFTableModelTrainBatchOp() \.setUserFiles(["https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py"]) \.setMainScriptFile("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py") \.setUserParams(json.dumps(userParams)) \.linkFrom(source)tfTableModelPredictBatchOp = TFTableModelPredictBatchOp() \.setOutputSchemaStr("logits double") \.setOutputSignatureDefs(["logits"]) \.setSignatureDefKey("predict") \.setSelectedCols(colNames) \.linkFrom(tfTableModelTrainBatchOp, source)tfTableModelPredictBatchOp.print()
Java 代码
import com.alibaba.alink.common.utils.JsonConverter;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.source.RandomTableSourceBatchOp;import com.alibaba.alink.operator.batch.tensorflow.TFTableModelPredictBatchOp;import com.alibaba.alink.operator.batch.tensorflow.TFTableModelTrainBatchOp;import org.junit.Test;import java.util.HashMap;import java.util.Map;public class TFTableModelPredictBatchOpTest {@Testpublic void testTFTableModelPredictBatchOp() throws Exception {BatchOperator<?> source = new RandomTableSourceBatchOp().setNumRows(100L).setNumCols(10);String[] colNames = source.getColNames();source = source.select("*, case when RAND() > 0.5 then 1. else 0. end as label");String label = "label";Map <String, Object> userParams = new HashMap <>();userParams.put("featureCols", JsonConverter.toJson(colNames));userParams.put("labelCol", label);userParams.put("batch_size", 16);userParams.put("num_epochs", 1);TFTableModelTrainBatchOp tfTableModelTrainBatchOp = new TFTableModelTrainBatchOp().setUserFiles(new String[] {"https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py"}).setMainScriptFile("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py").setUserParams(JsonConverter.toJson(userParams)).linkFrom(source);TFTableModelPredictBatchOp tfTableModelPredictBatchOp = new TFTableModelPredictBatchOp().setOutputSchemaStr("logits double").setOutputSignatureDefs(new String[]{"logits"}).setSignatureDefKey("predict").setSelectedCols(colNames).linkFrom(tfTableModelTrainBatchOp, source);tfTableModelPredictBatchOp.print();}}
运行结果
| col0 | col1 | col2 | col3 | col4 | col5 | col6 | col7 | col8 | col9 | label | logits | | —- | —- | —- | —- | —- | —- | —- | —- | —- | —- | —- | —- |
| 0.7310 | 0.2405 | 0.6374 | 0.5504 | 0.5975 | 0.3332 | 0.3852 | 0.9848 | 0.8792 | 0.9412 | 0 | -0.4253 |
| 0.2750 | 0.1289 | 0.1466 | 0.0232 | 0.5467 | 0.9645 | 0.1045 | 0.6251 | 0.4108 | 0.7763 | 0 | -0.4099 |
| 0.9907 | 0.4872 | 0.7462 | 0.7332 | 0.8173 | 0.8389 | 0.5267 | 0.8993 | 0.1339 | 0.0831 | 0 | -0.3881 |
| 0.9786 | 0.7224 | 0.7150 | 0.1432 | 0.4630 | 0.0045 | 0.0715 | 0.3484 | 0.3388 | 0.8594 | 0 | -0.3044 |
| 0.9715 | 0.8657 | 0.6126 | 0.1790 | 0.2176 | 0.8545 | 0.0097 | 0.6923 | 0.7713 | 0.7127 | 0 | -0.4693 |
| … | … | … | … | … | … | … | … | … | … | … | … |
