Java 类名:com.alibaba.alink.operator.batch.dataproc.vector.VectorStandardScalerPredictBatchOp
Python 类名:VectorStandardScalerPredictBatchOp
功能介绍
标准化是对向量数据进行按正态化处理的组件
VectorStandardScalerTrainBatchOp 计算向量的每一列的均值和方差,组件可以指定默认均值为0,标准差为1。
生成向量标准化的模型,在 VectorStandardScalerPredictBatchOp 中加载,对数据做标准化处理。
输入的向量可以同时包含稀疏向量和稠密向量,向量维度也可以不相同。输入稠密向量维度不够时,没有的维度默认为0。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
| outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([["a", "10.0, 100"],["b", "-2.5, 9"],["c", "100.2, 1"],["d", "-99.9, 100"],["a", "1.4, 1"],["b", "-2.2, 9"],["c", "100.9, 1"]])data = BatchOperator.fromDataframe(df, schemaStr="col string, vector string")trainOp = VectorStandardScalerTrainBatchOp().setSelectedCol("vector")model = trainOp.linkFrom(data)VectorStandardScalerPredictBatchOp().linkFrom(model, data).collectToDataframe()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.dataproc.vector.VectorStandardScalerPredictBatchOp;import com.alibaba.alink.operator.batch.dataproc.vector.VectorStandardScalerTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class VectorStandardScalerPredictBatchOpTest {@Testpublic void testVectorStandardScalerPredictBatchOp() throws Exception {List <Row> df = Arrays.asList(Row.of("a", "10.0, 100"),Row.of("b", "-2.5, 9"),Row.of("c", "100.2, 1"),Row.of("d", "-99.9, 100"),Row.of("a", "1.4, 1"),Row.of("b", "-2.2, 9"),Row.of("c", "100.9, 1"));BatchOperator <?> data = new MemSourceBatchOp(df, "col string, vector string");BatchOperator <?> trainOp = new VectorStandardScalerTrainBatchOp().setSelectedCol("vector");BatchOperator <?> model = trainOp.linkFrom(data);new VectorStandardScalerPredictBatchOp().linkFrom(model, data).print();}}
运行结果
| col1 | vec | | —- | —- |
| a | -0.07835182408093559,1.4595814453461897 |
| c | 1.2269606224811418,-0.6520885789229323 |
| b | -0.2549018445693762,-0.4814485769617911 |
| a | -0.20280511721213143,-0.6520885789229323 |
| c | 1.237090541689495,-0.6520885789229323 |
| b | -0.25924323851581327,-0.4814485769617911 |
| d | -1.6687491397923802,1.4595814453461897 |
