Java 类名:com.alibaba.alink.operator.batch.dataproc.HugeMultiIndexerStringPredictBatchOp
Python 类名:HugeMultiIndexerStringPredictBatchOp
功能介绍
提供ID转换为字符串的功能,与 HugeMultiStringIndexerPredictBatchOp 功能相反。
由 MultiStringIndexerTrainBatchOp 生成词典模型,将输入数据的ID转化成原文。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | 所选列类型为 [LONG] | |
| handleInvalid | 未知token处理策略 | 未知token处理策略。”keep”表示用最大id加1代替, “skip”表示补null, “error”表示抛异常 | String | “KEEP”, “ERROR”, “SKIP” | “KEEP” | |
| outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null | ||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([[1, "football", "apple"],[2, "football", "apple"],[3, "football", "apple"],[4, "basketball", "apple"],[5, "basketball", "apple"],[6, "tennis", "pair"],[7, "tennis", "pair"],[8, "pingpang", "banana"],[9, "pingpang", "banana"],[0, "baseball", "banana"]])data = BatchOperator.fromDataframe(df, schemaStr='id long, f0 string, f1 string')stringindexer = MultiStringIndexerTrainBatchOp()\.setSelectedCols(["f0", "f1"])\.setStringOrderType("frequency_asc")model = stringindexer.linkFrom(data)predictor = HugeMultiStringIndexerPredictBatchOp()\.setSelectedCols(["f0", "f1"])result = predictor.linkFrom(model, data)stringPredictor = HugeMultiIndexerStringPredictBatchOp()\.setSelectedCols(["f0", "f1"])\.setOutputCols(["f0_source", "f1_source"])stringPredictor.linkFrom(model, result).print();
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class HugeMultiIndexerStringPredictBatchOpTest {@Testpublic void testHugeMultiStringIndexerPredict() throws Exception {List <Row> df = Arrays.asList(Row.of(1L, "football", "apple"),Row.of(2L, "football", "apple"),Row.of(3L, "football", "apple"),Row.of(4L, "basketball", "apple"),Row.of(5L, "basketball", "apple"),Row.of(6L, "tennis", "pair"),Row.of(7L, "tennis", "pair"),Row.of(8L, "pingpang", "banana"),Row.of(9L, "pingpang", "banana"),Row.of(0L, "baseball", "banana"));// baseball 1// basketball,pair,tennis,pingpang 2// footbal,banana 3// apple 5BatchOperator <?> data = new MemSourceBatchOp(df, "id long,f0 string,f1 string");BatchOperator <?> stringindexer = new MultiStringIndexerTrainBatchOp().setSelectedCols("f0", "f1").setStringOrderType("frequency_asc");BatchOperator model = stringindexer.linkFrom(data);model.lazyPrint(10);BatchOperator <?> predictor = new HugeMultiStringIndexerPredictBatchOp().setSelectedCols("f0", "f1");BatchOperator result = predictor.linkFrom(model, data);result.lazyPrint(10);BatchOperator <?> stringPredictor = new HugeMultiIndexerStringPredictBatchOp().setSelectedCols("f0", "f1").setOutputCols("f0_source", "f1_source");stringPredictor.linkFrom(model, result).print();}}
运行结果
| column_index | token | token_index | | —- | —- | —- |
| 1 | apple | 2 |
| 1 | pair | 0 |
| 1 | banana | 1 |
| -1 | {“selectedCols”:”[“f0”,”f1”]”,”selectedColTypes”:”[“VARCHAR”,”VARCHAR”]”} | null |
| 0 | football | 4 |
| 0 | baseball | 0 |
| 0 | basketball | 1 |
| 0 | tennis | 2 |
| 0 | pingpang | 3 |
| id | f0 | f1 | | —- | —- | —- |
| 1 | 4 | 2 |
| 2 | 4 | 2 |
| 6 | 2 | 0 |
| 7 | 2 | 0 |
| 5 | 1 | 2 |
| 3 | 4 | 2 |
| 9 | 3 | 1 |
| 0 | 0 | 1 |
| 4 | 1 | 2 |
| 8 | 3 | 1 |
| id | f0 | f1 | f0_source | f1_source | | —- | —- | —- | —- | —- |
| 5 | 1 | 2 | basketball | apple |
| 2 | 4 | 2 | football | apple |
| 6 | 2 | 0 | tennis | pair |
| 4 | 1 | 2 | basketball | apple |
| 8 | 3 | 1 | pingpang | banana |
| 3 | 4 | 2 | football | apple |
| 7 | 2 | 0 | tennis | pair |
| 9 | 3 | 1 | pingpang | banana |
| 0 | 0 | 1 | baseball | banana |
| 1 | 4 | 2 | football | apple |
