Java 类名:com.alibaba.alink.operator.batch.dataproc.HugeIndexerStringPredictBatchOp
Python 类名:HugeIndexerStringPredictBatchOp
功能介绍
提供字符串ID化处理功能
由StringIndexerTrainBatchOp生成词典模型,将输入数据的ID类型转化成词典模型中对应的字符串。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | 所选列类型为 [LONG] | |
| handleInvalid | 未知token处理策略 | 未知token处理策略。”keep”表示用最大id加1代替, “skip”表示补null, “error”表示抛异常 | String | “KEEP”, “ERROR”, “SKIP” | “KEEP” | |
| outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null | ||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([["football", "apple"],["football", "apple"],["football", "apple"],["basketball", "apple"],["basketball", "apple"],["tennis", "pair"],["tennis", "pair"],["pingpang", "banana"],["pingpang", "banana"],["baseball", "banana"]])data = BatchOperator.fromDataframe(df, schemaStr='f0 string, f1 string')stringindexer = StringIndexerTrainBatchOp()\.setSelectedCol("f0")\.setSelectedCols(["f1"])\.setStringOrderType("alphabet_asc")predictor = HugeStringIndexerPredictBatchOp().setSelectedCols(["f0", "f1"])\.setOutputCols(["f0_indexed", "f1_indexed"])model = stringindexer.linkFrom(data)result = predictor.linkFrom(model, data)indexerString = HugeIndexerStringPredictBatchOp().setSelectedCols(["f0_indexed", "f1_indexed"])\.setOutputCols(["f0_source", "f1_source"])indexerString.linkFrom(model, result).print()
Java 代码
package com.alibaba.alink.operator.batch.dataproc;import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class HugeIndexerStringPredictBatchOpTest {@Testpublic void testStringIndexerPredictBatchOp() throws Exception {List <Row> df = Arrays.asList(Row.of("football", "apple"),Row.of("football", "apple"),Row.of("football", "apple"),Row.of("basketball", "apple"),Row.of("basketball", "apple"),Row.of("tennis", "pair"),Row.of("tennis", "pair"),Row.of("pingpang", "banana"),Row.of("pingpang", "banana"),Row.of("baseball", "banana"));BatchOperator <?> data = new MemSourceBatchOp(df, "f0 string,f1 string");BatchOperator <?> stringindexer = new StringIndexerTrainBatchOp().setSelectedCol("f0").setSelectedCols("f1").setStringOrderType("alphabet_asc");BatchOperator <?> predictor = new HugeStringIndexerPredictBatchOp().setSelectedCols("f0", "f1").setOutputCols("f0_indexed", "f1_indexed");BatchOperator model = stringindexer.linkFrom(data);model.lazyPrint(10);BatchOperator result = predictor.linkFrom(model, data);result.lazyPrint(10);BatchOperator <?> indexerString = new HugeIndexerStringPredictBatchOp().setSelectedCols("f0_indexed", "f1_indexed").setOutputCols("f0_source", "f1_source");indexerString.linkFrom(model, result).print();}}
运行结果
| f0 | f1 | f0_indexed | f1_indexed | f0_source | f1_source | | —- | —- | —- | —- | —- | —- |
| basketball | apple | 3 | 0 | basketball | apple |
| football | apple | 4 | 0 | football | apple |
| basketball | apple | 3 | 0 | basketball | apple |
| pingpang | banana | 6 | 1 | pingpang | banana |
| football | apple | 4 | 0 | football | apple |
| tennis | pair | 7 | 5 | tennis | pair |
| tennis | pair | 7 | 5 | tennis | pair |
| pingpang | banana | 6 | 1 | pingpang | banana |
| baseball | banana | 2 | 1 | baseball | banana |
| football | apple | 4 | 0 | football | apple |
