Java 类名:com.alibaba.alink.operator.batch.dataproc.FlattenMTableBatchOp
Python 类名:FlattenMTableBatchOp
功能介绍
该组件将 MTable 展开成 Table。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| schemaStr | Schema | Schema。格式为”colname coltype[, colname2, coltype2[, …]]”,例如”f0 string, f1 bigint, f2 double” | String | ✓ | ||
| selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [M_TABLE] | |
| handleInvalidMethod | 处理无效值的方法 | 处理无效值的方法,可取 error, skip | String | “ERROR”, “SKIP” | “ERROR” | |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
代码示例
Python 代码
import numpy as npimport pandas as pdfrom pyalink.alink import *df_data = pd.DataFrame([["a1", "11L", 2.2],["a1", "12L", 2.0],["a2", "11L", 2.0],["a2", "12L", 2.0],["a3", "12L", 2.0],["a3", "13L", 2.0],["a4", "13L", 2.0],["a4", "14L", 2.0],["a5", "14L", 2.0],["a5", "15L", 2.0],["a6", "15L", 2.0],["a6", "16L", 2.0]])input = BatchOperator.fromDataframe(df_data, schemaStr='id string, f0 string, f1 double')zip = GroupByBatchOp()\.setGroupByPredicate("id")\.setSelectClause("id, mtable_agg(f0, f1) as m_table_col")flatten = FlattenMTableBatchOp()\.setReservedCols(["id"])\.setSelectedCol("m_table_col")\.setSchemaStr('f0 string, f1 int')zip.linkFrom(input).link(flatten).print()
Java 代码
package com.alibaba.alink.operator.batch.dataproc;import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.sql.GroupByBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.testutil.AlinkTestBase;import org.junit.Test;import java.util.ArrayList;import java.util.List;/*** Test cases for gbdt.*/public class FlattenMTableTest extends AlinkTestBase {@Testpublic void test() throws Exception {List <Row> rows = new ArrayList <>();rows.add(Row.of("a1", "11L", 2.2));rows.add(Row.of("a1", "12L", 2.0));rows.add(Row.of("a2", "11L", 2.0));rows.add(Row.of("a2", "12L", 2.0));rows.add(Row.of("a3", "12L", 2.0));rows.add(Row.of("a3", "13L", 2.0));rows.add(Row.of("a4", "13L", 2.0));rows.add(Row.of("a4", "14L", 2.0));rows.add(Row.of("a5", "14L", 2.0));rows.add(Row.of("a5", "15L", 2.0));rows.add(Row.of("a6", "15L", 2.0));rows.add(Row.of("a6", "16L", 2.0));BatchOperator input = new MemSourceBatchOp(rows, "id string, f0 string, f1 double");GroupByBatchOp zip = new GroupByBatchOp().setGroupByPredicate("id").setSelectClause("id, mtable_agg(f0, f1) as m_table_col");FlattenMTableBatchOp flatten = new FlattenMTableBatchOp().setReservedCols("id").setSelectedCol("m_table_col").setSchemaStr("f0 string, f1 int");zip.linkFrom(input).link(flatten).print();}}
运行结果
| id | f0 | f1 | | —- | —- | —- |
| a2 | 11L | 2 |
| a2 | 12L | 2 |
| a4 | 13L | 2 |
| a4 | 14L | 2 |
| a5 | 14L | 2 |
| a5 | 15L | 2 |
| a1 | 11L | 2 |
| a1 | 12L | 2 |
| a3 | 12L | 2 |
| a3 | 13L | 2 |
| a6 | 15L | 2 |
| a6 | 16L | 2 |
