Java 类名:com.alibaba.alink.operator.batch.dataproc.ImputerPredictBatchOp
Python 类名:ImputerPredictBatchOp
功能介绍
数据缺失值填充处理,批式预测组件
运行时需要指定缺失值模型,由ImputerTrainBatchOp产生。缺失值填充的4种策略,即最大值、最小值、均值、指定数值,在生成缺失值模型时指定。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
| outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null | ||
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df_data = pd.DataFrame([["a", 10.0, 100],["b", -2.5, 9],["c", 100.2, 1],["d", -99.9, 100],["a", 1.4, 1],["b", -2.2, 9],["c", 100.9, 1],[None, None, None]])colnames = ["col1", "col2", "col3"]selectedColNames = ["col2", "col3"]inOp = BatchOperator.fromDataframe(df_data, schemaStr='col1 string, col2 double, col3 double')# traintrainOp = ImputerTrainBatchOp()\.setSelectedCols(selectedColNames)model = trainOp.linkFrom(inOp)# batch predictpredictOp = ImputerPredictBatchOp()predictOp.linkFrom(model, inOp).print()# stream predictsinOp = StreamOperator.fromDataframe(df_data, schemaStr='col1 string, col2 double, col3 double')predictStreamOp = ImputerPredictStreamOp(model)predictStreamOp.linkFrom(sinOp).print()StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.dataproc.ImputerPredictBatchOp;import com.alibaba.alink.operator.batch.dataproc.ImputerTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.dataproc.ImputerPredictStreamOp;import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class ImputerPredictBatchOpTest {@Testpublic void testImputerPredictBatchOp() throws Exception {List <Row> df_data = Arrays.asList(Row.of("a", 10.0, 100),Row.of("b", -2.5, 9),Row.of("c", 100.2, 1),Row.of("d", -99.9, 100),Row.of("a", 1.4, 1),Row.of("b", -2.2, 9),Row.of("c", 100.9, 1),Row.of(null, null, null));String[] selectedColNames = new String[] {"col2", "col3"};BatchOperator <?> inOp = new MemSourceBatchOp(df_data, "col1 string, col2 double, col3 int");BatchOperator <?> trainOp = new ImputerTrainBatchOp().setSelectedCols(selectedColNames);BatchOperator model = trainOp.linkFrom(inOp);BatchOperator <?> predictOp = new ImputerPredictBatchOp();predictOp.linkFrom(model, inOp).print();StreamOperator <?> sinOp = new MemSourceStreamOp(df_data, "col1 string, col2 double, col3 int");StreamOperator <?> predictStreamOp = new ImputerPredictStreamOp(model);predictStreamOp.linkFrom(sinOp).print();StreamOperator.execute();}}
运行结果
| col1 | col2 | col3 | | —- | —- | —- |
| a | 10.000000 | 100 |
| b | -2.500000 | 9 |
| c | 100.200000 | 1 |
| d | -99.900000 | 100 |
| a | 1.400000 | 1 |
| b | -2.200000 | 9 |
| c | 100.900000 | 1 |
| null | 15.414286 | 31 |
