Java 类名:com.alibaba.alink.operator.batch.dataproc.MaxAbsScalerPredictBatchOp
Python 类名:MaxAbsScalerPredictBatchOp
功能介绍
- 绝对值最大标准化是对数据按照最大值和最小值进行标准化的组件, 将数据归一到-1和1之间。
- 需要读入MaxAbsScalerTrainBatchOp生成的模型
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- | | modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null | | outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | | | null | | numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([["a", 10.0, 100],["b", -2.5, 9],["c", 100.2, 1],["d", -99.9, 100],["a", 1.4, 1],["b", -2.2, 9],["c", 100.9, 1]])colnames = ["col1", "col2", "col3"]selectedColNames = ["col2", "col3"]inOp = BatchOperator.fromDataframe(df, schemaStr='col1 string, col2 double, col3 long')# traintrainOp = MaxAbsScalerTrainBatchOp()\.setSelectedCols(selectedColNames)trainOp.linkFrom(inOp)# batch predictpredictOp = MaxAbsScalerPredictBatchOp()predictOp.linkFrom(trainOp, inOp).print()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.dataproc.MaxAbsScalerPredictBatchOp;import com.alibaba.alink.operator.batch.dataproc.MaxAbsScalerTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class MaxAbsScalerPredictBatchOpTest {@Testpublic void testMaxAbsScalerPredictBatchOp() throws Exception {List <Row> df = Arrays.asList(Row.of("a", 10.0, 100),Row.of("b", -2.5, 9),Row.of("c", 100.2, 1),Row.of("d", -99.9, 100),Row.of("a", 1.4, 1),Row.of("b", -2.2, 9),Row.of("c", 100.9, 1));String[] selectedColNames = new String[] {"col2", "col3"};BatchOperator <?> inOp = new MemSourceBatchOp(df, "col1 string, col2 double, col3 int");BatchOperator <?> trainOp = new MaxAbsScalerTrainBatchOp().setSelectedCols(selectedColNames);trainOp.linkFrom(inOp);BatchOperator <?> predictOp = new MaxAbsScalerPredictBatchOp();predictOp.linkFrom(trainOp, inOp).print();}}
运行结果
| col1 | col2 | col3 | | —- | —- | —- |
| a | 0.0991 | 1.0000 |
| b | -0.0248 | 0.0900 |
| c | 0.9931 | 0.0100 |
| d | -0.9901 | 1.0000 |
| a | 0.0139 | 0.0100 |
| b | -0.0218 | 0.0900 |
| c | 1.0000 | 0.0100 |
