Java 类名:com.alibaba.alink.pipeline.nlp.Tokenizer
Python 类名:Tokenizer
功能介绍
使用方式
文本列通过参数 selectedCol 指定,输出列通过 outputCol 指定。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | ||
| outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
代码示例
Python 代码
df = pd.DataFrame([[0, 'That is an English Book!'],[1, 'Do you like math?'],[2, 'Have a good day!']])inOp1 = BatchOperator.fromDataframe(df, schemaStr='id long, text string')op = Tokenizer().setSelectedCol("text")op.transform(inOp1).print()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.pipeline.nlp.Tokenizer;import org.junit.Test;import java.util.Arrays;import java.util.List;public class TokenizerTest {@Testpublic void testTokenizer() throws Exception {List <Row> df = Arrays.asList(Row.of(0, "That is an English Book!"),Row.of(1, "Do you like math?"),Row.of(2, "Have a good day!"));BatchOperator <?> inOp1 = new MemSourceBatchOp(df, "id int, text string");Tokenizer op = new Tokenizer().setSelectedCol("text");op.transform(inOp1).print();}}
运行结果
| id | text |
|---|---|
| 0 | that is an english book! |
| 1 | do you like math? |
| 2 | have a good day! |
