Java 类名:com.alibaba.alink.operator.batch.dataproc.StringIndexerTrainBatchOp
Python 类名:StringIndexerTrainBatchOp
功能介绍
StringIndexer训练组件的作用是训练一个模型用于将单列字符串映射为整数。
如将一列映射为整数,需指定 setSelectedCol 设定。
同时,该组件支持输入多列,生成一个映射词典,通过 setSelectedCols 设定其他需要补充的列名。
特征的排列顺序支持 random,frequency_asc,frequency_desc,alphabet_asc,alphabet_desc 五种排序方法。
注意:输入多列时,所有列必须为相同格式。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [INTEGER, LONG, STRING] | |
| modelName | 模型名字 | 模型名字 | String | |||
| selectedCols | 选中的列名数组 | 计算列对应的列名列表 | String[] | 所选列类型为 [INTEGER, LONG, STRING] | null | |
| stringOrderType | Token排序方法 | Token排序方法 | String | “RANDOM”, “FREQUENCY_ASC”, “FREQUENCY_DESC”, “ALPHABET_ASC”, “ALPHABET_DESC” | “RANDOM” |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([["football", "apple"],["football", "apple"],["football", "apple"],["basketball", "apple"],["basketball", "apple"],["tennis", "pair"],["tennis", "pair"],["pingpang", "banana"],["pingpang", "banana"],["baseball", "banana"]])data = BatchOperator.fromDataframe(df, schemaStr='f0 string,f1 string')stringindexer = StringIndexerTrainBatchOp() \.setSelectedCol("f0") \.setSelectedCols(["f1"]) \.setStringOrderType("alphabet_asc")model = stringindexer.linkFrom(data)model.print()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.dataproc.StringIndexerTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class StringIndexerTrainBatchOpTest {@Testpublic void testAlphabetAsc() throws Exception {List <Row> df = Arrays.asList(Row.of("football", "apple"),Row.of("football", "apple"),Row.of("football", "apple"),Row.of("basketball", "apple"),Row.of("basketball", "apple"),Row.of("tennis", "pair"),Row.of("tennis", "pair"),Row.of("pingpang", "banana"),Row.of("pingpang", "banana"),Row.of("baseball", "banana"));BatchOperator <?> data = new MemSourceBatchOp(df, "f0 string,f1 string");BatchOperator <?> stringindexer = new StringIndexerTrainBatchOp().setSelectedCol("f0").setSelectedCols("f1").setStringOrderType("alphabet_asc");BatchOperator model = stringindexer.linkFrom(data);model.print();}}
运行结果
模型表:
| token | token_index | | —- | —- |
| pingpang | 6 |
| banana | 1 |
| baseball | 2 |
| basketball | 3 |
| pair | 5 |
| apple | 0 |
| football | 4 |
| tennis | 7 |
