Java 类名:com.alibaba.alink.operator.batch.evaluation.EvalRankingBatchOp
Python 类名:EvalRankingBatchOp
功能介绍
排序评估是对推荐排序算法的预测结果进行效果评估,支持下列评估指标。
hitRate
#### averageReciprocalHitRank
#### map (Mean Average Precision)
#### ndcgArray (Normalized Discounted Cumulative Gain)
subsetAccuracy
#### hammingLoss
#### accuracy
#### microPrecision
#### microRecall
#### microF1
#### precision
#### recall
#### f1
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | | |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| labelRankingInfo | Object列列名 | Object列列名 | String | | | “object” |
| predictionRankingInfo | Object列列名 | Object列列名 | String | | | “object” |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([["{\"object\":\"[1, 6, 2, 7, 8, 3, 9, 10, 4, 5]\"}", "{\"object\":\"[1, 2, 3, 4, 5]\"}"],["{\"object\":\"[4, 1, 5, 6, 2, 7, 3, 8, 9, 10]\"}", "{\"object\":\"[1, 2, 3]\"}"],["{\"object\":\"[1, 2, 3, 4, 5]\"}", "{\"object\":\"[]\"}"]])inOp = BatchOperator.fromDataframe(df, schemaStr='pred string, label string')metrics = EvalRankingBatchOp().setPredictionCol('pred').setLabelCol('label').linkFrom(inOp).collectMetrics()print(metrics)
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.evaluation.EvalRankingBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.common.evaluation.RankingMetrics;import org.junit.Test;import java.util.Arrays;import java.util.List;public class EvalRankingBatchOpTest {@Testpublic void testEvalRankingBatchOp() throws Exception {List <Row> df = Arrays.asList(Row.of("{\"object\":\"[1, 6, 2, 7, 8, 3, 9, 10, 4, 5]\"}", "{\"object\":\"[1, 2, 3, 4, 5]\"}"),Row.of("{\"object\":\"[4, 1, 5, 6, 2, 7, 3, 8, 9, 10]\"}", "{\"object\":\"[1, 2, 3]\"}"),Row.of("{\"object\":\"[1, 2, 3, 4, 5]\"}", "{\"object\":\"[]\"}"));BatchOperator <?> inOp = new MemSourceBatchOp(df, "pred string, label string");RankingMetrics metrics = new EvalRankingBatchOp().setPredictionCol("pred").setLabelCol("label").linkFrom(inOp).collectMetrics();System.out.println(metrics.toString());}}
运行结果
-------------------------------- Metrics: --------------------------------microPrecision:0.32averageReciprocalHitRank:0.5precision:0.2667accuracy:0.2667f1:0.3761hitRate:0.6667microRecall:1microF1:0.4848subsetAccuracy:0recall:0.6667map:0.355hammingLoss:0.5667
