Java 类名:com.alibaba.alink.operator.stream.tensorflow.TFTableModelPredictStreamOp
Python 类名:TFTableModelPredictStreamOp
功能介绍
使用 TFTableModelTrainBatchOp 或者 TF2TableModelTrainBatchOp 训练产生的模型进行预测。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| outputSchemaStr | Schema | Schema。格式为”colname coltype[, colname2, coltype2[, …]]”,例如 “f0 string, f1 bigint, f2 double” | String | ✓ | | |
| graphDefTag | graph标签 | graph标签 | String | | | “serve” |
| inputSignatureDefs | 输入 SignatureDef | SavedModel 模型的输入 SignatureDef 名,用逗号分隔,需要与输入列一一对应,默认与选择列相同 | String[] | | | null |
| intraOpParallelism | Op 间并发度 | Op 间并发度 | Integer | | | 4 |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| outputSignatureDefs | TF 输出 SignatureDef 名 | 模型的输出 SignatureDef 名,多个输出时用逗号分隔,并且与输出 Schema 一一对应,默认与输出 Schema 中的列名相同 | String[] | | | null |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| selectedCols | 选中的列名数组 | 计算列对应的列名列表 | String[] | | | null |
| signatureDefKey | signature标签 | signature标签 | String | | | “serving_default” |
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | | | null |
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | | | 10 |
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |
代码示例
以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!
Python 代码
import jsonsource = RandomTableSourceBatchOp() \.setNumRows(100) \.setNumCols(10)streamSource = RandomTableSourceStreamOp() \.setNumCols(10) \.setMaxRows(100)colNames = source.getColNames()source = source.select("*, case when RAND() > 0.5 then 1. else 0. end as label")label = "label"userParams = {'featureCols': json.dumps(colNames),'labelCol': label,'batch_size': 16,'num_epochs': 1}tfTableModelTrainBatchOp = TFTableModelTrainBatchOp() \.setUserFiles(["https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py"]) \.setMainScriptFile("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py") \.setUserParams(json.dumps(userParams)) \.linkFrom(source)tfTableModelPredictStreamOp = TFTableModelPredictStreamOp(tfTableModelTrainBatchOp) \.setOutputSchemaStr("logits double") \.setOutputSignatureDefs(["logits"]) \.setSignatureDefKey("predict") \.setSelectedCols(colNames) \.linkFrom(streamSource)tfTableModelPredictStreamOp.print()StreamOperator.execute()
Java 代码
import com.alibaba.alink.common.utils.JsonConverter;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.source.RandomTableSourceBatchOp;import com.alibaba.alink.operator.batch.tensorflow.TFTableModelTrainBatchOp;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.source.RandomTableSourceStreamOp;import com.alibaba.alink.operator.stream.tensorflow.TFTableModelPredictStreamOp;import org.junit.Test;import java.util.HashMap;import java.util.Map;public class TFTableModelPredictStreamOpTest {@Testpublic void testTFTableModelPredictStreamOp() throws Exception {BatchOperator <?> source = new RandomTableSourceBatchOp().setNumRows(100L).setNumCols(10);String[] colNames = source.getColNames();source = source.select("*, case when RAND() > 0.5 then 1. else 0. end as label");String label = "label";StreamOperator<?> streamSource = new RandomTableSourceStreamOp().setNumCols(10).setMaxRows(100L);Map <String, Object> userParams = new HashMap <>();userParams.put("featureCols", JsonConverter.toJson(colNames));userParams.put("labelCol", label);userParams.put("batch_size", 16);userParams.put("num_epochs", 1);TFTableModelTrainBatchOp tfTableModelTrainBatchOp = new TFTableModelTrainBatchOp().setUserFiles(new String[] {"https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py"}).setMainScriptFile("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py").setUserParams(JsonConverter.toJson(userParams)).linkFrom(source);TFTableModelPredictStreamOp tfTableModelPredictStreamOp = new TFTableModelPredictStreamOp(tfTableModelTrainBatchOp).setOutputSchemaStr("logits double").setOutputSignatureDefs(new String[] {"logits"}).setSignatureDefKey("predict").setSelectedCols(colNames).linkFrom(streamSource);tfTableModelPredictStreamOp.print();StreamOperator.execute();}}
运行结果
| num | col0 | col1 | col2 | col3 | col4 | col5 | col6 | col7 | col8 | col9 | logits | | —- | —- | —- | —- | —- | —- | —- | —- | —- | —- | —- | —- |
| 52 | 0.8289 | 0.0595 | 0.8372 | 0.4365 | 0.5137 | 0.3043 | 0.6373 | 0.7164 | 0.3754 | 0.2490 | -0.0958 |
| 34 | 0.0506 | 0.1309 | 0.0579 | 0.4603 | 0.4680 | 0.2531 | 0.7893 | 0.7719 | 0.3453 | 0.7246 | -0.1723 |
| 23 | 0.1034 | 0.4412 | 0.5226 | 0.1031 | 0.5974 | 0.7483 | 0.3918 | 0.8350 | 0.4634 | 0.4486 | -0.0420 |
| 60 | 0.7367 | 0.6767 | 0.8048 | 0.0243 | 0.4491 | 0.0166 | 0.2471 | 0.0429 | 0.1482 | 0.7834 | -0.0458 |
| 35 | 0.5111 | 0.4983 | 0.3353 | 0.3196 | 0.8428 | 0.0538 | 0.8995 | 0.7321 | 0.5583 | 0.2186 | -0.1468 |
| … | … | … | … | … | … | … | … | … | … | … | … |
