Java 类名:com.alibaba.alink.operator.batch.recommendation.FlattenKObjectBatchOp
Python 类名:FlattenKObjectBatchOp
功能介绍
将推荐结果从json序列化格式转为table格式。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| outputCols | 输出结果列列名数组 | 输出结果列列名数组,必选 | String[] | ✓ | | |
| selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [STRING] | |
| outputColTypes | 输出结果列列类型数组 | 输出结果列类型数组 | String[] | | | null |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df_data = pd.DataFrame([[1, 1, 0.6],[2, 2, 0.8],[2, 3, 0.6],[4, 1, 0.6],[4, 2, 0.3],[4, 3, 0.4],])data = BatchOperator.fromDataframe(df_data, schemaStr='user bigint, item bigint, rating double')jsonData = Zipped2KObjectBatchOp()\.setGroupCol("user")\.setObjectCol("item")\.setInfoCols(["rating"])\.setOutputCol("recomm")\.linkFrom(data)\.lazyPrint(-1);recList = FlattenKObjectBatchOp()\.setSelectedCol("recomm")\.setOutputCols(["item", "rating"])\.setOutputColTypes(["long", "double"])\.setReservedCols(["user"])\.linkFrom(jsonData)\.lazyPrint(-1);BatchOperator.execute();
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.recommendation.FlattenKObjectBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.common.recommendation.Zipped2KObjectBatchOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class FlattenKObjectBatchOpTest {@Testpublic void testFlattenKObjectBatchOp() throws Exception {List <Row> df_data = Arrays.asList(Row.of(1, 1, 0.6),Row.of(2, 2, 0.8),Row.of(2, 3, 0.6),Row.of(4, 1, 0.6),Row.of(4, 2, 0.3),Row.of(4, 3, 0.4));BatchOperator <?> data = new MemSourceBatchOp(df_data, "user int, item int, rating double");BatchOperator <?> jsonData = new Zipped2KObjectBatchOp().setGroupCol("user").setObjectCol("item").setInfoCols("rating").setOutputCol("recomm").linkFrom(data).lazyPrint(-1);BatchOperator <?> recList = new FlattenKObjectBatchOp().setSelectedCol("recomm").setOutputCols("item", "rating").setOutputColTypes("long", "double").setReservedCols("user").linkFrom(jsonData).lazyPrint(-1);BatchOperator.execute();}}
运行结果
| user | recomm | | —- | —- |
| 1 | {“item”:”[1]”,”rating”:”[0.6]”} |
| 4 | {“item”:”[1,2,3]”,”rating”:”[0.6,0.3,0.4]”} |
| 2 | {“item”:”[2,3]”,”rating”:”[0.8,0.6]”} |
| user | item | rating | | —- | —- | —- |
| 1 | 1 | 0.6000 |
| 4 | 1 | 0.6000 |
| 4 | 2 | 0.3000 |
| 4 | 3 | 0.4000 |
| 2 | 2 | 0.8000 |
| 2 | 3 | 0.6000 |
