Java 类名:com.alibaba.alink.operator.batch.clustering.GmmTrainBatchOp
Python 类名:GmmTrainBatchOp
功能介绍
混合模型(Mixture Model)是一个可以用来表示在总体分布中含有K个子分布的概率模型。换句话说,混合模型表示了观测数据在总体中的概率分布,它是一个由K个子分布组成的混合分布。
而高斯混合模型(Gaussian Mixture Model, GMM)可以用来表示在总体分布中含有K个高斯子分布的概率模型。它通常可以被用作分类模型。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| vectorCol | 向量列名 | 向量列对应的列名 | String | ✓ | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | |
| epsilon | 收敛阈值 | 当两轮迭代的中心点距离小于epsilon时,算法收敛。 | Double | | | 1.0E-4 |
| k | 聚类中心点数量 | 聚类中心点数量 | Integer | | | 2 |
| maxIter | 最大迭代步数 | 最大迭代步数,默认为 100 | Integer | | [1, +inf) | 100 |
| randomSeed | 随机数种子 | 随机数种子 | Integer | | | 0 |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df_data = pd.DataFrame([["-0.6264538 0.1836433"],["-0.8356286 1.5952808"],["0.3295078 -0.8204684"],["0.4874291 0.7383247"],["0.5757814 -0.3053884"],["1.5117812 0.3898432"],["-0.6212406 -2.2146999"],["11.1249309 9.9550664"],["9.9838097 10.9438362"],["10.8212212 10.5939013"],["10.9189774 10.7821363"],["10.0745650 8.0106483"],["10.6198257 9.9438713"],["9.8442045 8.5292476"],["9.5218499 10.4179416"],])data = BatchOperator.fromDataframe(df_data, schemaStr='features string')dataStream = StreamOperator.fromDataframe(df_data, schemaStr='features string')gmm = GmmTrainBatchOp() \.setVectorCol("features") \.setEpsilon(0.)model = gmm.linkFrom(data)predictor = GmmPredictBatchOp() \.setPredictionCol("cluster_id") \.setVectorCol("features") \.setPredictionDetailCol("cluster_detail")predictor.linkFrom(model, data).print()predictorStream = GmmPredictStreamOp(model) \.setPredictionCol("cluster_id") \.setVectorCol("features") \.setPredictionDetailCol("cluster_detail")predictorStream.linkFrom(dataStream).print()StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.clustering.GmmPredictBatchOp;import com.alibaba.alink.operator.batch.clustering.GmmTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.clustering.GmmPredictStreamOp;import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class GmmTrainBatchOpTest {@Testpublic void testGmmTrainBatchOp() throws Exception {List <Row> df_data = Arrays.asList(Row.of("-0.6264538 0.1836433"),Row.of("-0.8356286 1.5952808"),Row.of("0.3295078 -0.8204684"),Row.of("0.4874291 0.7383247"),Row.of("0.5757814 -0.3053884"),Row.of("1.5117812 0.3898432"),Row.of("-0.6212406 -2.2146999"),Row.of("11.1249309 9.9550664"),Row.of("9.9838097 10.9438362"),Row.of("10.8212212 10.5939013"),Row.of("10.9189774 10.7821363"),Row.of("10.0745650 8.0106483"),Row.of("10.6198257 9.9438713"),Row.of("9.8442045 8.5292476"),Row.of("9.5218499 10.4179416"));BatchOperator <?> data = new MemSourceBatchOp(df_data, "features string");StreamOperator <?> dataStream = new MemSourceStreamOp(df_data, "features string");BatchOperator <?> gmm = new GmmTrainBatchOp().setVectorCol("features").setEpsilon(0.);BatchOperator <?> model = gmm.linkFrom(data);BatchOperator <?> predictor = new GmmPredictBatchOp().setPredictionCol("cluster_id").setVectorCol("features").setPredictionDetailCol("cluster_detail");predictor.linkFrom(model, data).print();StreamOperator <?> predictorStream = new GmmPredictStreamOp(model).setPredictionCol("cluster_id").setVectorCol("features").setPredictionDetailCol("cluster_detail");predictorStream.linkFrom(dataStream).print();StreamOperator.execute();}}
运行结果
| features | cluster_id | cluster_detail | | —- | —- | —- |
| -0.6264538 0.1836433 | 1 | 4.275273913968281E-92 1.0 |
| -0.8356286 1.5952808 | 1 | 1.0260377730239899E-92 1.0 |
| 0.3295078 -0.8204684 | 1 | 1.0970173367545207E-80 1.0 |
| 0.4874291 0.7383247 | 1 | 3.302173132311E-75 1.0 |
| 0.5757814 -0.3053884 | 1 | 3.1638113605165424E-76 1.0 |
| 1.5117812 0.3898432 | 1 | 2.101805230873173E-62 1.0 |
| -0.6212406 -2.2146999 | 1 | 6.772270268600749E-97 1.0 |
| 11.1249309 9.9550664 | 0 | 1.0 3.156783801247968E-56 |
| 9.9838097 10.9438362 | 0 | 1.0 1.9024447346702425E-51 |
| 10.8212212 10.5939013 | 0 | 1.0 2.800973098729604E-56 |
| 10.9189774 10.7821363 | 0 | 1.0 1.7209132744891298E-57 |
| 10.0745650 8.0106483 | 0 | 1.0 2.8642696635130495E-43 |
| 10.6198257 9.9438713 | 0 | 1.0 5.773273991940433E-53 |
| 9.8442045 8.5292476 | 0 | 1.0 2.5273123050925483E-43 |
| 9.5218499 10.4179416 | 0 | 1.0 1.7314580596767853E-46 |
