Java 类名:com.alibaba.alink.operator.batch.dataproc.MultiStringIndexerTrainBatchOp
Python 类名:MultiStringIndexerTrainBatchOp
功能介绍
MultiStringIndexer 训练组件的作用是训练一个模型用于将多列字符串映射为整数,训练的时候指定多个列,每个列单独编码。
支持按照一定的次序编码。如随机、出现频次生序,出现频次降序、字符串生序、字符串降序5种方式。
设置 setStringOrderType 参数时分别对应 random frequency_asc frequency_desc alphabet_asc alphabet_desc。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | ||
| stringOrderType | Token排序方法 | Token排序方法 | String | “RANDOM”, “FREQUENCY_ASC”, “FREQUENCY_DESC”, “ALPHABET_ASC”, “ALPHABET_DESC” | “RANDOM” |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([["football"],["football"],["football"],["basketball"],["basketball"],["tennis"],])data = BatchOperator.fromDataframe(df, schemaStr='f0 string')stringindexer = MultiStringIndexerTrainBatchOp() \.setSelectedCols(["f0"]) \.setStringOrderType("frequency_asc")model = stringindexer.linkFrom(data)model.print()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.dataproc.MultiStringIndexerTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class MultiStringIndexerTrainBatchOpTest {@Testpublic void testMultiStringIndexerTrainBatchOp() throws Exception {List <Row> df = Arrays.asList(Row.of("football"),Row.of("football"),Row.of("football"),Row.of("basketball"),Row.of("basketball"),Row.of("tennis"));BatchOperator <?> data = new MemSourceBatchOp(df, "f0 string");BatchOperator <?> stringindexer = new MultiStringIndexerTrainBatchOp().setSelectedCols("f0").setStringOrderType("frequency_asc");BatchOperator model = stringindexer.linkFrom(data);model.print();}}
运行结果
| column_index | token | token_index | | —- | —- | —- |
| -1 | {“selectedCols”:”[“f0”]”,”selectedColTypes”:”[“VARCHAR”]”} | null |
| 0 | tennis | 0 |
| 0 | basketball | 1 |
| 0 | football | 2 |
