Java 类名:com.alibaba.alink.operator.batch.dataproc.StringIndexerPredictBatchOp
Python 类名:StringIndexerPredictBatchOp
功能介绍
基于StringIndexer模型,将一列字符串映射为整数。该组件为批式组件。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [INTEGER, LONG, STRING] | |
| handleInvalid | 未知token处理策略 | 未知token处理策略。”keep”表示用最大id加1代替, “skip”表示补null, “error”表示抛异常 | String | “KEEP”, “ERROR”, “SKIP” | “KEEP” | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
| outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([["football"],["football"],["football"],["basketball"],["basketball"],["tennis"],])data = BatchOperator.fromDataframe(df, schemaStr='f0 string')stringindexer = StringIndexerTrainBatchOp() \.setSelectedCol("f0") \.setStringOrderType("frequency_asc")predictor = StringIndexerPredictBatchOp().setSelectedCol("f0").setOutputCol("f0_indexed")model = stringindexer.linkFrom(data)predictor.linkFrom(model, data).print()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.dataproc.StringIndexerPredictBatchOp;import com.alibaba.alink.operator.batch.dataproc.StringIndexerTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class StringIndexerPredictBatchOpTest {@Testpublic void testStringIndexerPredictBatchOp() throws Exception {List <Row> df = Arrays.asList(Row.of("football"),Row.of("football"),Row.of("football"),Row.of("basketball"),Row.of("basketball"),Row.of("tennis"));BatchOperator <?> data = new MemSourceBatchOp(df, "f0 string");BatchOperator <?> stringindexer = new StringIndexerTrainBatchOp().setSelectedCol("f0").setStringOrderType("frequency_asc");BatchOperator <?> predictor = new StringIndexerPredictBatchOp().setSelectedCol("f0").setOutputCol("f0_indexed");BatchOperator model = stringindexer.linkFrom(data);predictor.linkFrom(model, data).print();}}
运行结果
| f0 | f0_indexed | | —- | —- |
| football | 2 |
| football | 2 |
| football | 2 |
| basketball | 1 |
| basketball | 1 |
| tennis | 0 |
