Java 类名:com.alibaba.alink.operator.batch.feature.ChiSqSelectorBatchOp
Python 类名:ChiSqSelectorBatchOp
功能介绍
针对table数据,进行特征筛选
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | ||
| selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | ||
| fdr | 发现阈值 | 发现阈值, 默认值0.05 | Double | 0.05 | ||
| fpr | p value的阈值 | p value的阈值,默认值0.05 | Double | 0.05 | ||
| fwe | 错误率阈值 | 错误率阈值, 默认值0.05 | Double | 0.05 | ||
| numTopFeatures | 最大的p-value列个数 | 最大的p-value列个数, 默认值50 | Integer | 50 | ||
| percentile | 筛选的百分比 | 筛选的百分比,默认值0.1 | Double | 0.1 | ||
| selectorType | 筛选类型 | 筛选类型,包含”NumTopFeatures”,”percentile”, “fpr”, “fdr”, “fwe”五种。 | String | “NumTopFeatures”, “PERCENTILE”, “FPR”, “FDR”, “FWE” | “NumTopFeatures” |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([["a", 1, 1,2.0, True],["c", 1, 2, -3.0, True],["a", 2, 2,2.0, False],["c", 0, 0, 0.0, False]])source = BatchOperator.fromDataframe(df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean')selector = ChiSqSelectorBatchOp()\.setSelectedCols(["f_string", "f_long", "f_int", "f_double"])\.setLabelCol("f_boolean")\.setNumTopFeatures(2)selector.linkFrom(source)modelInfo: ChisqSelectorModelInfo = selector.collectModelInfo()print(modelInfo.getColNames())
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.feature.ChiSqSelectorBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.common.feature.ChisqSelectorModelInfo;import org.junit.Test;import java.util.Arrays;import java.util.List;public class ChiSqSelectorBatchOpTest {@Testpublic void testChiSqSelectorBatchOp() throws Exception {List <Row> df = Arrays.asList(Row.of("a", 1L, 1, 2.0, true),Row.of("c", 1L, 2, -3.0, true),Row.of("a", 2L, 2, 2.0, false),Row.of("c", 0L, 0, 0.0, false));BatchOperator <?> source = new MemSourceBatchOp(df,"f_string string, f_long long, f_int int, f_double double, f_boolean boolean");ChiSqSelectorBatchOp selector = new ChiSqSelectorBatchOp().setSelectedCols("f_string", "f_long", "f_int", "f_double").setLabelCol("f_boolean").setNumTopFeatures(2);selector.linkFrom(source);ChisqSelectorModelInfo modelInfo = selector.collectModelInfo();System.out.println(modelInfo.toString());}}
运行结果
------------------------- ChisqSelectorModelInfo -------------------------Number of Selector Features: 2Number of Features: 4Type of Selector: NumTopFeaturesNumber of Top Features: 2Selector Indices:| ColName|ChiSquare|PValue| DF|Selected||--------|---------|------|---|--------|| f_long| 4|0.1353| 2| true|| f_int| 2|0.3679| 2| true||f_double| 2|0.3679| 2| false||f_string| 0| 1| 1| false|
