Java 类名:com.alibaba.alink.operator.batch.sink.AppendModelStreamFileSinkBatchOp
Python 类名:AppendModelStreamFileSinkBatchOp
功能介绍
将模型按照给定的时间戳,插入模型流。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| filePath | 文件路径 | 文件路径 | String | ✓ | | |
| modelTime | 批模型时间戳 | 模型时间戳。默认当前时间。 使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |
| numFiles | 文件数目 | 文件数目 | Integer | | | 1 |
| numKeepModel | 保存模型的数目 | 实时写出模型的数目上限 | Integer | | | 2147483647 |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([[1.0, "A", 0, 0, 0, 1.0],[2.0, "B", 1, 1, 0, 2.0],[3.0, "C", 2, 2, 1, 3.0],[4.0, "D", 3, 3, 1, 4.0]])input = BatchOperator.fromDataframe(df, schemaStr='f0 double, f1 string, f2 int, f3 int, label int, reg_label double')rfOp = RandomForestTrainBatchOp()\.setLabelCol("reg_label")\.setFeatureCols(["f0", "f1", "f2", "f3"])\.setFeatureSubsamplingRatio(0.5)\.setSubsamplingRatio(1.0)\.setNumTreesOfInfoGain(1)\.setNumTreesOfInfoGain(1)\.setNumTreesOfInfoGainRatio(1)\.setCategoricalCols(["f1"])modelStream = AppendModelStreamFileSinkBatchOp()\.setFilePath("/tmp/random_forest_model_stream")\.setNumKeepModel(10)rfOp.linkFrom(input).link(modelStream)BatchOperator.execute()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.classification.RandomForestTrainBatchOp;import com.alibaba.alink.operator.batch.sink.AppendModelStreamFileSinkBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import org.junit.Test;import java.util.Arrays;public class AppendModelStreamFileSinkBatchOpTest {@Testpublic void testAppendModelStreamFileSinkBatchOp() throws Exception {Row[] rows = new Row[] {Row.of(1.0, "A", 0L, 0, 0, 1.0),Row.of(2.0, "B", 1L, 1, 0, 2.0),Row.of(3.0, "C", 2L, 2, 1, 3.0),Row.of(4.0, "D", 3L, 3, 1, 4.0)};String[] colNames = new String[] {"f0", "f1", "f2", "f3", "label", "reg_label"};String labelColName = colNames[4];MemSourceBatchOp input = new MemSourceBatchOp(Arrays.asList(rows), new String[] {"f0", "f1", "f2", "f3", "label", "reg_label"});RandomForestTrainBatchOp rfOp = new RandomForestTrainBatchOp().setLabelCol(labelColName).setFeatureCols(colNames[0], colNames[1], colNames[2], colNames[3]).setFeatureSubsamplingRatio(0.5).setSubsamplingRatio(1.0).setNumTreesOfInfoGain(1).setNumTreesOfInfoGain(1).setNumTreesOfInfoGainRatio(1).setCategoricalCols(colNames[1]);rfOp.linkFrom(input).link(new AppendModelStreamFileSinkBatchOp().setFilePath("/tmp/random_forest_model_stream").setNumKeepModel(10));BatchOperator.execute();}}
