Java 类名:com.alibaba.alink.operator.batch.clustering.BisectingKMeansTrainBatchOp
Python 类名:BisectingKMeansTrainBatchOp
功能介绍
二分k均值算法是k-means聚类算法的一个变体,主要是为了改进k-means算法随机选择初始质心的随机性造成聚类结果不确定性的问题。
二分k均值方法是一种自顶向下的聚类。初始阶段该算法将所有节点视为属于同一个cluster。在每次迭代中,它选择一个类别,然后使用Kmeans算法对该类中的所有数据点进行二分类。当没有类可拆分时或者达到最大聚类个数时,算法终止。
参数说明
训练
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| vectorCol | 向量列名 | 向量列对应的列名 | String | ✓ | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | |
| distanceType | 距离度量方式 | 聚类使用的距离类型 | String | | “EUCLIDEAN”, “COSINE” | “EUCLIDEAN” |
| k | 聚类中心点数目 | 聚类中心点数目 | Integer | | | 4 |
| maxIter | 最大迭代步数 | 最大迭代步数,默认为 10。 | Integer | | | 10 |
| minDivisibleClusterSize | 最小可分裂的聚类大小 | 最小可分裂的聚类大小 | Integer | | | 1 |
| randomSeed | 随机数种子 | 随机数种子 | Integer | | | 0 |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([[0, "0 0 0"],[1, "0.1,0.1,0.1"],[2, "0.2,0.2,0.2"],[3, "9 9 9"],[4, "9.1 9.1 9.1"],[5, "9.2 9.2 9.2"]])inBatch = BatchOperator.fromDataframe(df, schemaStr='id int, vec string')inStream = StreamOperator.fromDataframe(df, schemaStr='id int, vec string')kmeansTrain = BisectingKMeansTrainBatchOp()\.setVectorCol("vec")\.setK(2)\.linkFrom(inBatch)kmeansTrain.lazyPrint(10)predictBatch = BisectingKMeansPredictBatchOp()\.setPredictionCol("pred")\.linkFrom(kmeansTrain, inBatch)predictBatch.print()predictStream = BisectingKMeansPredictStreamOp(kmeansTrain)\.setPredictionCol("pred")\.linkFrom(inStream)predictStream.print()StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.clustering.BisectingKMeansPredictBatchOp;import com.alibaba.alink.operator.batch.clustering.BisectingKMeansTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.clustering.BisectingKMeansPredictStreamOp;import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class BisectingKMeansTrainBatchOpTest {@Testpublic void testBisectingKMeansTrainBatchOp() throws Exception {List <Row> df = Arrays.asList(Row.of(0, "0 0 0"),Row.of(1, "0.1,0.1,0.1"),Row.of(2, "0.2,0.2,0.2"),Row.of(3, "9 9 9"),Row.of(4, "9.1 9.1 9.1"),Row.of(5, "9.2 9.2 9.2"));BatchOperator <?> inBatch = new MemSourceBatchOp(df, "id int, vec string");StreamOperator <?> inStream = new MemSourceStreamOp(df, "id int, vec string");BatchOperator <?> kmeansTrain = new BisectingKMeansTrainBatchOp().setVectorCol("vec").setK(2).linkFrom(inBatch);kmeansTrain.lazyPrint(10);BatchOperator <?> predictBatch = new BisectingKMeansPredictBatchOp().setPredictionCol("pred").linkFrom(kmeansTrain, inBatch);predictBatch.print();StreamOperator <?> predictStream = new BisectingKMeansPredictStreamOp(kmeansTrain).setPredictionCol("pred").linkFrom(inStream);predictStream.print();StreamOperator.execute();}}
运行结果
模型结果
| model_id | model_info | | —- | —- |
| 0 | {“vectorCol”:””vec””,”distanceType”:””EUCLIDEAN””,”k”:”2”,”vectorSize”:”3”} |
| 1048576 | {“clusterId”:1,”size”:6,”center”:{“data”:[4.6,4.6,4.6]},”cost”:364.61999999999995} |
| 2097152 | {“clusterId”:2,”size”:3,”center”:{“data”:[0.1,0.1,0.1]},”cost”:0.06} |
| 3145728 | {“clusterId”:3,”size”:3,”center”:{“data”:[9.099999999999998,9.099999999999998,9.099999999999998]},”cost”:0.060000000000172804} |
预测结果
| id | vec | pred | | —- | —- | —- |
| 0 | 0 0 0 | 0 |
| 1 | 0.1,0.1,0.1 | 0 |
| 2 | 0.2,0.2,0.2 | 0 |
| 3 | 9 9 9 | 1 |
| 4 | 9.1 9.1 9.1 | 1 |
| 5 | 9.2 9.2 9.2 | 1 |
