Java 类名:com.alibaba.alink.operator.batch.timeseries.AutoArimaBatchOp
Python 类名:AutoArimaBatchOp
功能介绍
给定分组,对每一组的数据进行AutoArima时间序列预测,给出下一时间段的结果。
算法原理
Arima全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出一著名时间序列预测方法,所以又称为box-jenkins模型、博克思-詹金斯法.
Arima 详细介绍请见链接 https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
AutoArima是只需要指定MaxOrder, 不需要指定p/d/q, 对每个分组分别计算出最优的参数,给出预测结果。
使用方式
参考文档 https://www.yuque.com/pinshu/alink_guide/xbp5ky
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| valueCol | value列,类型为MTable | value列,类型为MTable | String | ✓ | 所选列类型为 [M_TABLE] | |
| d | d | d | Integer | | | -1 |
| estMethod | 估计方法 | 估计方法 | String | | “Mom”, “Hr”, “Css”, “CssMle” | “CssMle” |
| icType | 评价指标 | 评价指标 | String | | “AIC”, “BIC”, “HQIC” | “AIC” |
| maxOrder | 模型(p, q)上限 | 模型(p, q)上限 | Integer | | | 10 |
| maxSeasonalOrder | 季节模型(p, q)上限 | 季节模型(p, q)上限 | Integer | | | 1 |
| predictNum | 预测条数 | 预测条数 | Integer | | | 1 |
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| seasonalPeriod | 季节周期 | 季节周期 | Integer | | [1, +inf) | 1 |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)import time, datetimeimport numpy as npimport pandas as pddata = pd.DataFrame([[1, datetime.datetime.fromtimestamp(1), 10.0],[1, datetime.datetime.fromtimestamp(2), 11.0],[1, datetime.datetime.fromtimestamp(3), 12.0],[1, datetime.datetime.fromtimestamp(4), 13.0],[1, datetime.datetime.fromtimestamp(5), 14.0],[1, datetime.datetime.fromtimestamp(6), 15.0],[1, datetime.datetime.fromtimestamp(7), 16.0],[1, datetime.datetime.fromtimestamp(8), 17.0],[1, datetime.datetime.fromtimestamp(9), 18.0],[1, datetime.datetime.fromtimestamp(10), 19.0]])source = dataframeToOperator(data, schemaStr='id int, ts timestamp, val double', op_type='batch')source.link(GroupByBatchOp().setGroupByPredicate("id").setSelectClause("id, mtable_agg(ts, val) as data")).link(AutoArimaBatchOp().setValueCol("data").setPredictionCol("pred").setPredictNum(12)).print()
Java 代码
package com.alibaba.alink.operator.batch.timeseries;import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.batch.sql.GroupByBatchOp;import com.alibaba.alink.testutil.AlinkTestBase;import org.junit.Test;import java.sql.Timestamp;import java.util.Arrays;import java.util.List;public class AutoArimaBatchOpTest extends AlinkTestBase {@Testpublic void test() throws Exception {List <Row> mTableData = Arrays.asList(Row.of(1, new Timestamp(1), 10.0),Row.of(1, new Timestamp(2), 11.0),Row.of(1, new Timestamp(3), 12.0),Row.of(1, new Timestamp(4), 13.0),Row.of(1, new Timestamp(5), 14.0),Row.of(1, new Timestamp(6), 15.0),Row.of(1, new Timestamp(7), 16.0),Row.of(1, new Timestamp(8), 17.0),Row.of(1, new Timestamp(9), 18.0),Row.of(1, new Timestamp(10), 19.0));MemSourceBatchOp source = new MemSourceBatchOp(mTableData, new String[] {"id", "ts", "val"});source.link(new GroupByBatchOp().setGroupByPredicate("id").setSelectClause("mtable_agg(ts, val) as data")).link(new AutoArimaBatchOp().setValueCol("data").setPredictionCol("pred").setPredictNum(12)).print();}}
运行结果
| id | data | pred | | —- | —- | —- |
| 1 | {“data”:{“ts”:[“1970-01-01 08:00:00.001”,”1970-01-01 08:00:00.002”,”1970-01-01 08:00:00.003”,”1970-01-01 08:00:00.004”,”1970-01-01 08:00:00.005”,”1970-01-01 08:00:00.006”,”1970-01-01 08:00:00.007”,”1970-01-01 08:00:00.008”,”1970-01-01 08:00:00.009”,”1970-01-01 08:00:00.01”],”val”:[10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0]},”schema”:”ts TIMESTAMP,val DOUBLE”} | {“data”:{“ts”:[“1970-01-01 08:00:00.011”,”1970-01-01 08:00:00.012”,”1970-01-01 08:00:00.013”,”1970-01-01 08:00:00.014”,”1970-01-01 08:00:00.015”,”1970-01-01 08:00:00.016”,”1970-01-01 08:00:00.017”,”1970-01-01 08:00:00.018”,”1970-01-01 08:00:00.019”,”1970-01-01 08:00:00.02”,”1970-01-01 08:00:00.021”,”1970-01-01 08:00:00.022”],”val”:[20.000043772632726,21.00014925657013,22.000313191190525,23.000532237570944,24.00080305617429,25.001122306860452,26.001486648897377,27.00189274097219,28.002337241202284,29.00281680714645,30.003328095815966,31.003867763685733]},”schema”:”ts TIMESTAMP,val DOUBLE”} |
