Java 类名:com.alibaba.alink.operator.batch.sql.DistinctBatchOp
Python 类名:DistinctBatchOp
功能介绍
对批式数据进行sql的DISTINCT操作。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([['Ohio', 2000, 1.5],['Ohio', 2001, 1.7],['Ohio', 2002, 3.6],['Nevada', 2001, 2.4],['Nevada', 2002, 2.9],['Nevada', 2003, 3.2]])batch_data = BatchOperator.fromDataframe(df, schemaStr='f1 string, f2 bigint, f3 double')batch_data.select('f1').link(DistinctBatchOp()).print()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.batch.sql.DistinctBatchOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class DistinctBatchOpTest {@Testpublic void testDistinctBatchOp() throws Exception {List <Row> df = Arrays.asList(Row.of("Ohio", 2000, 1.5),Row.of("Ohio", 2001, 1.7),Row.of("Ohio", 2002, 3.6),Row.of("Nevada", 2001, 2.4),Row.of("Nevada", 2002, 2.9),Row.of("Nevada", 2003, 3.2));BatchOperator <?> batch_data = new MemSourceBatchOp(df, "f1 string, f2 int, f3 double");batch_data.select("f1").link(new DistinctBatchOp()).print();}}
运行结果
| f1 | | —- |
| Nevada |
| Ohio |
