Java 类名:com.alibaba.alink.operator.stream.clustering.StreamingKMeansStreamOp
Python 类名:StreamingKMeansStreamOp
功能介绍
流式Kmeans聚类算法,对流数据进行Kmeans聚类。流式KMeans聚类,需要三个输入:
- 训练好的批式的KMeans模型
- 流式的更新模型的数据
- 流式的需要预测的数据
若只有两个输入,那么第一个输入被算法识别为训练好的初始Kmeans模型,第二个输入被同时用作”流式的更新模型的数据”和”流式的需要预测的数据”。
本算法组件会根据2流入的数据在固定的timeinterval内更新模型,这个模型会用来预测3的输入数据。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| halfLife | 半生命周期 | 半生命周期 | Integer | ✓ | ||
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
| timeInterval | 时间间隔 | 时间间隔,单位秒 | Long | ✓ | ||
| predictionClusterCol | 预测距离列名 | 预测距离列名 | String | |||
| predictionDistanceCol | 预测距离列名 | 预测距离列名 | String | |||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([[0, "0 0 0"],[1, "0.1,0.1,0.1"],[2, "0.2,0.2,0.2"],[3, "9 9 9"],[4, "9.1 9.1 9.1"],[5, "9.2 9.2 9.2"]])inOp = BatchOperator.fromDataframe(df, schemaStr='id int, vec string')stream_data = StreamOperator.fromDataframe(df, schemaStr='id int, vec string')init_model = KMeansTrainBatchOp()\.setVectorCol("vec")\.setK(2)\.linkFrom(inOp)streamingkmeans = StreamingKMeansStreamOp(init_model) \.setTimeInterval(1) \.setHalfLife(1) \.setReservedCols(["vec"])pred = streamingkmeans.linkFrom(stream_data, stream_data)pred.print()StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.clustering.KMeansTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.clustering.StreamingKMeansStreamOp;import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class StreamingKMeansStreamOpTest {@Testpublic void testStreamingKMeansStreamOp() throws Exception {List <Row> df = Arrays.asList(Row.of(0, "0 0 0"),Row.of(1, "0.1,0.1,0.1"),Row.of(2, "0.2,0.2,0.2"),Row.of(3, "9 9 9"),Row.of(4, "9.1 9.1 9.1"),Row.of(5, "9.2 9.2 9.2"));BatchOperator <?> inOp = new MemSourceBatchOp(df, "id int, vec string");StreamOperator <?> stream_data = new MemSourceStreamOp(df, "id int, vec string");BatchOperator <?> init_model = new KMeansTrainBatchOp().setVectorCol("vec").setK(2).linkFrom(inOp);StreamOperator <?> streamingkmeans = new StreamingKMeansStreamOp(init_model).setTimeInterval(1L).setHalfLife(1).setReservedCols("vec");StreamOperator <?> pred = streamingkmeans.linkFrom(stream_data, stream_data);pred.print();StreamOperator.execute();}}
运行结果
| vec | cluster_id |
|---|---|
| 0.2,0.2,0.2 | 1 |
| 0 0 0 | 1 |
| 0.1,0.1,0.1 | 1 |
| 9.2 9.2 9.2 | 0 |
| 9.1 9.1 9.1 | 0 |
| 9 9 9 | 0 |
