本题要求编写程序,计算 2 个有理数的和、差、积、商。
输入格式:
输入在一行中按照 a1/b1 a2/b2 的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整数,负号只可能出现在分子前,分母不为 0。
输出格式:
分别在 4 行中按照 有理数1 运算符 有理数2 = 结果 的格式顺序输出 2 个有理数的和、差、积、商。注意输出的每个有理数必须是该有理数的最简形式 k a/b,其中 k 是整数部分,a/b 是最简分数部分;若为负数,则须加括号;若除法分母为 0,则输出 Inf。题目保证正确的输出中没有超过整型范围的整数。
输入样例 1:
2/3 -4/2
输出样例 1:
2/3 + (-2) = (-1 1/3)2/3 - (-2) = 2 2/32/3 * (-2) = (-1 1/3)2/3 / (-2) = (-1/3)
输入样例 2:
5/3 0/6
输出样例 2:
1 2/3 + 0 = 1 2/31 2/3 - 0 = 1 2/31 2/3 * 0 = 01 2/3 / 0 = Inf
思路
- 用结构体来模拟分数运算
- 两个
int型变量相乘,结果可能超过int型承受的范围。所有我的分子分母均采用long long int - 必须在每一步加法后都进行约分。如果等全部加完后才约分,则会溢出
有些例子容易出错:
2-1/2 2/4// Output:0
21/3 -1/2// Output:-1/6
代码
#include<cstdio>#include<algorithm>using namespace std;struct Fraction {long long int up;long long int down;};long long int gcd(long long int, long long int);Fraction reduction(Fraction result); /* 对分数进行约分 */Fraction add(Fraction f1, Fraction f2);Fraction minus(Fraction f1, Fraction f2);Fraction multiply(Fraction f1, Fraction f2);Fraction divide(Fraction f1, Fraction f2);void display(Fraction result); /* 展示Fraction对象 */int main() {Fraction number1, number2, result;scanf("%lld/%lld %lld/%lld", &number1.up, &number1.down, &number2.up, &number2.down);/** 展示加法 */display(number1);printf(" + ");display(number2);printf(" = ");display(add(number1, number2));printf("\n");/** 展示减法 */display(number1);printf(" - ");display(number2);printf(" = ");display(minus(number1, number2));printf("\n");/** 展示乘法 */display(number1);printf(" * ");display(number2);printf(" = ");display(multiply(number1, number2));printf("\n");/** 展示除法 */display(number1);printf(" / ");display(number2);printf(" = ");if(number2.up == 0) {printf("Inf\n");}else {display(divide(number1, number2));printf("\n");}return 0;}/***********************函数实现**********************************/long long int gcd(long long int m, long long int n) {if(n == 0)return m;else {int remainder;while(n) { /* 辗转相除法求最大公因数 */remainder = m % n;m = n;n = remainder;}return m;}}Fraction reduction(Fraction result) {if(result.down < 0) { /* 如果分数是负的,我们统一把负号放到分子 */result.up = -result.up;result.down = -result.down;}if(result.up == 0) { /* 如果分子为0 */result.down = 1; /* 令分母为1 */}else { /* 如果分子不为0 *//* 找分子分母的最大公因数 */int factor = gcd(abs(result.up), abs(result.down));result.up /= factor; /* 约掉最大公因数 */result.down /= factor;}return result;}Fraction add(Fraction f1, Fraction f2) {Fraction result;result.up = (f1.up * f2.down) + (f2.up * f1.down);result.down = f1.down * f2.down;return reduction(result);}Fraction minus(Fraction f1, Fraction f2) {Fraction result;result.up = (f1.up * f2.down) - (f2.up * f1.down);result.down = f1.down * f2.down;return reduction(result);}Fraction multiply(Fraction f1, Fraction f2) {Fraction result;result.up = f1.up * f2.up;result.down = f1.down * f2.down;return reduction(result);}Fraction divide(Fraction f1, Fraction f2) {Fraction result;result.up = f1.up * f2.down;result.down = f1.down * f2.up;return reduction(result);}void display(Fraction result) {result = reduction(result);if(result.up < 0)printf("(");if(result.up == 0) {printf("0");}else if(result.down == 1) { /* 分母为1,是一个整数 */printf("%lld", result.up);}else if(abs(result.up) > abs(result.down)) { /* 假分数 */printf("%d %d/%d", result.up / result.down, abs(result.up) % result.down, result.down);}else { /* 真分数 */printf("%d/%d", result.up, result.down);}if(result.up < 0)printf(")");}
