# coding=utf-8import pandas as pdimport numpy as npfile_path = "./starbucks_store_worldwide.csv"df = pd.read_csv(file_path)# print(df.head(1))# print(df.info())# grouped = df.groupby(by="Country")# print(grouped)#DataFrameGroupBy#可以进行遍历# for i,j in grouped:# print(i)# print("-"*100)# print(j,type(j))# print("*"*100)# df[df["Country"]="US"]#调用聚合方法# country_count = grouped["Brand"].count()# print(country_count["US"])# print(country_count["CN"])#统计中国每个省店铺的数量# china_data = df[df["Country"] =="CN"]## grouped = china_data.groupby(by="State/Province").count()["Brand"]## print(grouped)#数据按照多个条件进行分组,返回Series# grouped = df["Brand"].groupby(by=[df["Country"],df["State/Province"]]).count()# print(grouped)# print(type(grouped))#数据按照多个条件进行分组,返回DataFramegrouped1 = df[["Brand"]].groupby(by=[df["Country"],df["State/Province"]]).count()# grouped2= df.groupby(by=[df["Country"],df["State/Province"]])[["Brand"]].count()# grouped3 = df.groupby(by=[df["Country"],df["State/Province"]]).count()[["Brand"]]print(grouped1,type(grouped1))# print("*"*100)# print(grouped2,type(grouped2))# print("*"*100)## print(grouped3,type(grouped3))#索引的方法和属性print(grouped1.index)