# coding=utf-8import pandas as pdimport numpy as npfrom matplotlib import pyplot as pltdf = pd.read_csv("./911.csv")df["timeStamp"] = pd.to_datetime(df["timeStamp"])df.set_index("timeStamp",inplace=True)#统计出911数据中不同月份电话次数的count_by_month = df.resample("M").count()["title"]print(count_by_month)#画图_x = count_by_month.index_y = count_by_month.values# for i in _x:# print(dir(i))# break_x = [i.strftime("%Y%m%d") for i in _x]plt.figure(figsize=(20,8),dpi=80)plt.plot(range(len(_x)),_y)plt.xticks(range(len(_x)),_x,rotation=45)plt.show()
# coding=utf-8#911数据中不同月份不同类型的电话的次数的变化情况import pandas as pdimport numpy as npfrom matplotlib import pyplot as plt#把时间字符串转为时间类型设置为索引df = pd.read_csv("./911.csv")df["timeStamp"] = pd.to_datetime(df["timeStamp"])#添加列,表示分类temp_list = df["title"].str.split(": ").tolist()cate_list = [i[0] for i in temp_list]# print(np.array(cate_list).reshape((df.shape[0],1)))df["cate"] = pd.DataFrame(np.array(cate_list).reshape((df.shape[0],1)))df.set_index("timeStamp",inplace=True)print(df.head(1))plt.figure(figsize=(20, 8), dpi=80)#分组for group_name,group_data in df.groupby(by="cate"): #对不同的分类都进行绘图 count_by_month = group_data.resample("M").count()["title"] # 画图 _x = count_by_month.index print(_x) _y = count_by_month.values _x = [i.strftime("%Y%m%d") for i in _x] plt.plot(range(len(_x)), _y, label=group_name)plt.xticks(range(len(_x)), _x, rotation=45)plt.legend(loc="best")plt.show()