- 数据介绍

原始数据的下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/
数据描述 (1)699条样本,共11列数据,第一列用语检索的id,后9列分别是与肿瘤 相关的医学特征,最后一列表示肿瘤类型的数值。 (2)包含16个缺失值,用”?”标出。
1 分析
1.获取数据2.基本数据处理2.1 缺失值处理2.2 确定特征值,目标值2.3 分割数据3.特征工程(标准化)4.机器学习(逻辑回归)5.模型评估
2 代码
import pandas as pdimport numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import StandardScalerfrom sklearn.linear_model import LogisticRegressionimport sslssl._create_default_https_context = ssl._create_unverified_context
# 1.获取数据names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape','Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin','Normal Nucleoli', 'Mitoses', 'Class']data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",names=names)data.head()
# 2.基本数据处理# 2.1 缺失值处理data = data.replace(to_replace="?", value=np.NaN)data = data.dropna()# 2.2 确定特征值,目标值x = data.iloc[:, 1:10]x.head()y = data["Class"]y.head()# 2.3 分割数据x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)
# 3.特征工程(标准化)transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)
# 4.机器学习(逻辑回归)estimator = LogisticRegression()estimator.fit(x_train, y_train)
# 5.模型评估y_predict = estimator.predict(x_test)y_predictestimator.score(x_test, y_test)
在很多分类场景当中我们不一定只关注预测的准确率!!!!!
比如以这个癌症举例子!!!我们并不关注预测的准确率,而是关注在所有的样本当中,癌症患者有没有被全部预测(检测)出来。
