解法一:动态规划
dp[i][j] 表示 text1[0:i] 和 text2[0:j] 的最长公共子序列长度。状态转移方程如下:
class Solution {public int longestCommonSubsequence(String text1, String text2) {char[] s1 = text1.toCharArray();char[] s2 = text2.toCharArray();final int len1 = s1.length;final int len2 = s2.length;// dp[i][j]表示text1[0:i]和text2[0:j]的最长公共子序列长度int[][] dp = new int[len1 + 1][len2 + 1];for (int i = 1; i <= len1; ++i) {for (int j = 1; j <= len2; ++j) {if (s1[i - 1] == s2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[len1][len2];}}
