解法一:动态规划
考虑 N 维子矩阵时,dp[N][i][j] 表示以元素 (i,j) 为左上角,边长为 N 的子矩阵内部是否全为1。
考察满足条件的 N 维矩阵时,不需要考察每一个元素,只需要考察相邻的4个满足条件的 N-1 维矩阵即可,动规方程方程如下:
class Solution {public int countSquares(int[][] matrix) {final int row = matrix.length;final int col = matrix[0].length;int ans = 0;for (int i = 0; i < row; ++i) {for (int j = 0; j < col; ++j) {if (matrix[i][j] > 0) {++ans;}}}for (int k = 1; k < Math.min(row, col); ++k) {for (int i = 0; i < row - k; ++i) {for (int j = 0; j < col - k; ++j) {matrix[i][j] = matrix[i][j] & matrix[i + 1][j] & matrix[i][j + 1] & matrix[i + 1][j + 1];if (matrix[i][j] > 0) {++ans;}}}}return ans;}}
解法二:动态规划
参考官方题解:https://leetcode-cn.com/problems/count-square-submatrices-with-all-ones/solution/
class Solution {public int countSquares(int[][] matrix) {final int row = matrix.length;final int col = matrix[0].length;int[][] dp = new int[row][col];int ans = 0;for (int i = 0; i < row; ++i) {for (int j = 0; j < col; ++j) {if (matrix[i][j] == 0) {dp[i][j] = 0;} else if ((i == 0) || (j == 0)) {dp[i][j] = matrix[i][j];} else {dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;}ans += dp[i][j];}}return ans;}}
