PyTorchRNN
# Example code of a simple RNN, GRU, LSTM on the MNIST dataset.import torchimport torchvision# 参数函数,类似激活函数import torch.nn.functional as F# standard datasetsimport torchvision.datasets as datasets# 可以对数据集进行转换import torchvision.transforms as transformsfrom torch import optim # 参数优化from torch import nn # 所有神经网络模块# Gives easier dataset managment by creating mini batches etcfrom torch.utils.data import DataLoader# for nice progress bar!from tqdm import tqdm# Set device cuda for GPU if it's available otherwise run on the CPUdevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')#--------------------------------------------------------------------# Recurrent neural network (many-to-one)class RNN(nn.Module):def __init__(self,input_size,hidden_size,num_layers,num_classes):super(RNN,self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layersself.rnn = nn.RNN(input_size,hidden_size,num_layers,batch_first=True)self.fc = nn.Linear(hidden_size*seq_len,num_classes)def forward(self,x):# set initial hidden and cell statsh0 = torch.zeros(self.num_layers,x.size(0),self.hidden_size).to(device)out,_ = self.rnn(x,h0)out = out.reshape(x.shape[0],-1)out = self.fc(out)return out#--------------------------------------------------------------------class RNN_GRU(nn.Module):def __int__(self,input_size,hidden_size,num_layers,num_classes):super(RNN_GRU,self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layersselg.gru = nn.GRU(input_size,hidden_size,num_layers,batch_size=True)self.fc = nn.Linear(hidden_size*seq_len,num_classes)def forward(self,x):h0 = torch.zeros(num_layers,x.size(0),self.hidden_size).to(device)out,_ = self.gru(x,h0)out = out.reshape(x.size(0),-1)out =self.fc(out)return out#--------------------------------------------------------------------class RNN_LSTM(nn.Module):def __init__(self,input_size,hidden_size,num_layers,num_classes):super(RNN_LSTM,self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layersself.lstm = nn.LSTM(input_size,hidden_size,num_layers,batch_first=True)self.fc = nn.Linear(hidden_size*seq_len,num_classes)def forward(self,x):c0 = torch.zeros(num_layers,x.size(0),self.hidden_size)h0 = torch.zeros(num_layers,x.size(0),self.hidden_size)out,_ = self.lstm(x,(h0,c0))# out: tensor of shape (batch_size, seq_length, hidden_size)out = out.reshape(out.shape[0], -1)out = self.fc(out)return out#--------------------------------------------------------------------# 参数设置input_size = 28num_classes = 10learning_rate = 0.001batch_size = 64num_epochs = 3num_layers = 2seq_len = 28hidden_size = 256# Load Training and Test datatrain_dataset = datasets.MNIST(root='dataset/',train=True,transform=transforms.ToTensor(),download=True)test_dataset = datasets.MNIST(root='dataset/',train=False,transform=transforms.ToTensor(),download=True)train_loader = DataLoader(dataset=train_dataset,shuffle=True,batch_size=batch_size)test_loader = DataLoader(dataset=test_dataset,shuffle=True,batch_size=batch_size)#--------------------------------------------------------------------# 初始化网络model = RNN_LSTM(input_size, hidden_size, num_layers, num_classes).to(device)# loss and optimizercriterion= nn.CrossEntropyLoss()optimizer = optim.Adam(model.parameters(),lr=learning_rate)# 训练网络for epoch in range(num_epochs):for batch_idxm,(data,targets) in enumerate(tqdm(train_loader)):data = data.to(device).squeeze(1)targets = targets.to(device)# forwardoutputs = model(data)# 计算损失loss = criterion(outputs,targets)# 向后传播loss.backward()# 梯度归0optimizer.zero_grad()# 梯度优化optimizer.step()#--------------------------------------------------------------------# Check accuracy on training & test to see how good our modeldef check_accuracy(loader, model):num_correct = 0num_samples = 0model.eval()with torch.no_grad():for x, y in loader:x = x.to(device=device).squeeze(1)y = y.to(device=device)outputs = model(x)_, indexes = outputs.max(1)num_correct += (indexes == y).sum()num_samples += indexes.size(0) # batch_sizemodel.train()return num_correct/num_samples#--------------------------------------------------------------------print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}")print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")# Accuracy on training set: 10.22# Accuracy on test set: 10.10
