由於語法渲染問題而影響閱讀體驗, 請移步博客閱讀~
本文GitPage地址
Tensorflow-Numbers-k
我也不记得这是啥了= =
##!/usr/local/bin/python3.6import numpy as npimport pandas as pdfrom sklearn.model_selection import train_test_splitfrom tensorflow.python import kerasfrom tensorflow.python.keras.models import Sequentialfrom tensorflow.python.keras.layers import Dense, Flatten, Conv2D, Dropouta=pd.read_csv("train.csv")a.drop('label', axis=1)img_rows, img_cols = 28, 28num_classes = 10def data_prep(raw):out_y = keras.utils.to_categorical(raw.label, num_classes)num_images = raw.shape[0]x_as_array = raw.values[:,1:]x_shaped_array = x_as_array.reshape(num_images, img_rows, img_cols, 1)out_x = x_shaped_array / 255return out_x, out_ytrain_size = 30000train_file = "train.csv"raw_data = pd.read_csv(train_file)x, y = data_prep(raw_data)model = Sequential()model.add(Conv2D(30, kernel_size=(3, 3),strides=2,activation='relu',input_shape=(img_rows, img_cols, 1)))Dropout(0.5)model.add(Conv2D(30, kernel_size=(3, 3), strides=2, activation='relu'))Dropout(0.5)model.add(Flatten())model.add(Dense(128, activation='relu'))model.add(Dense(num_classes, activation='softmax'))model.compile(loss=keras.losses.categorical_crossentropy,optimizer='adam',metrics=['accuracy'])model.fit(x, y,batch_size=128,epochs=2,validation_split = 0.2)
Enjoy~
由於語法渲染問題而影響閱讀體驗, 請移步博客閱讀~
本文GitPage地址
GitHub: Karobben
Blog:Karobben
BiliBili:史上最不正經的生物狗
