由於語法渲染問題而影響閱讀體驗, 請移步博客閱讀~
本文GitPage地址
Tensorflow
##!/usr/locol/bin/python3.6import tensorflow as tfimport numpy as np## creat datax_data = np.random.rand(100).astype(np.float32)y_data = x_data*0.1 + 0.3#### creat tnsorflow structure startWeights = tf.Variable(tf.random_uniform([1],-1.0,1.0))biases = tf.Variable(tf.zeros([1]))y = Weightess =tf.Session()*x_data + biasesloss = tf.reduce_mean(tf.square(y - y_data))optimizer = tf.train.GradientDescentOptimizer(0.5)train = optimizer.minimize(loss)init = tf.initialize_all_variables()###create tensorflow structure end ###sess =tf.Session()sess.run(init)for step in range(201):sess.run(train)if step % 20 == 0:print(step, sess.run(Weights),sess.run(biases))#### add a laier###def add_layer(inputs, in_size, out_size, activation_function=None):Weights = tf.Variable(tf.random_normal([in_size, out_size]))biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)Wx_plus_b = tf.matmul(inputs, Weights) + biasesif activation_function is None:outputs = Wx_plus_belse:outputs = activation_function(Wx_plus_b)return outputs#####################From https://tensorflow.google.cn/get_started/premade_estimators###############
Enjoy~
由於語法渲染問題而影響閱讀體驗, 請移步博客閱讀~
本文GitPage地址
GitHub: Karobben
Blog:Karobben
BiliBili:史上最不正經的生物狗
