使用nn.Transformertorchtext的序列到序列建模

原文:https://pytorch.org/tutorials/beginner/transformer_tutorial.html

这是一个有关如何训练使用nn.Transformer模块的序列到序列模型的教程。

PyTorch 1.2 版本包括一个基于论文的标准转换器模块。 事实证明,该转换器模型在许多序列间问题上具有较高的质量,同时具有更高的可并行性。 nn.Transformer模块完全依赖于注意力机制(另一个最近实现为nn.MultiheadAttention的模块)来绘制输入和输出之间的全局依存关系。 nn.Transformer模块现已高度模块化,因此可以轻松地修改/组成单个组件(如本教程中的nn.TransformerEncoder)。

../_img/transformer_architecture.jpg

定义模型

在本教程中,我们将在语言建模任务上训练nn.TransformerEncoder模型。 语言建模任务是为给定单词(或单词序列)遵循单词序列的可能性分配概率。 标记序列首先传递到嵌入层,然后传递到位置编码层以说明单词的顺序(有关更多详细信息,请参见下一段)。 nn.TransformerEncoder由多层nn.TransformerEncoderLayer组成。 与输入序列一起,还需要一个正方形的注意掩码,因为nn.TransformerEncoder中的自注意层仅允许出现在该序列中的较早位置。 对于语言建模任务,应屏蔽将来头寸上的所有标记。 为了获得实际的单词,将nn.TransformerEncoder模型的输出发送到最终的Linear层,然后是对数 Softmax 函数。

  1. import math
  2. import torch
  3. import torch.nn as nn
  4. import torch.nn.functional as F
  5. class TransformerModel(nn.Module):
  6. def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
  7. super(TransformerModel, self).__init__()
  8. from torch.nn import TransformerEncoder, TransformerEncoderLayer
  9. self.model_type = 'Transformer'
  10. self.pos_encoder = PositionalEncoding(ninp, dropout)
  11. encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
  12. self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
  13. self.encoder = nn.Embedding(ntoken, ninp)
  14. self.ninp = ninp
  15. self.decoder = nn.Linear(ninp, ntoken)
  16. self.init_weights()
  17. def generate_square_subsequent_mask(self, sz):
  18. mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
  19. mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
  20. return mask
  21. def init_weights(self):
  22. initrange = 0.1
  23. self.encoder.weight.data.uniform_(-initrange, initrange)
  24. self.decoder.bias.data.zero_()
  25. self.decoder.weight.data.uniform_(-initrange, initrange)
  26. def forward(self, src, src_mask):
  27. src = self.encoder(src) * math.sqrt(self.ninp)
  28. src = self.pos_encoder(src)
  29. output = self.transformer_encoder(src, src_mask)
  30. output = self.decoder(output)
  31. return output

PositionalEncoding模块注入一些有关标记在序列中的相对或绝对位置的信息。 位置编码的尺寸与嵌入的尺寸相同,因此可以将两者相加。 在这里,我们使用不同频率的sinecosine函数。

  1. class PositionalEncoding(nn.Module):
  2. def __init__(self, d_model, dropout=0.1, max_len=5000):
  3. super(PositionalEncoding, self).__init__()
  4. self.dropout = nn.Dropout(p=dropout)
  5. pe = torch.zeros(max_len, d_model)
  6. position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
  7. div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
  8. pe[:, 0::2] = torch.sin(position * div_term)
  9. pe[:, 1::2] = torch.cos(position * div_term)
  10. pe = pe.unsqueeze(0).transpose(0, 1)
  11. self.register_buffer('pe', pe)
  12. def forward(self, x):
  13. x = x + self.pe[:x.size(0), :]
  14. return self.dropout(x)

加载和批量数据

本教程使用torchtext生成 Wikitext-2 数据集。 vocab对象是基于训练数据集构建的,用于将标记数字化为张量。 从序列数据开始,batchify()函数将数据集排列为列,以修剪掉数据分成大小为batch_size的批量后剩余的所有标记。 例如,以字母为序列(总长度为 26)并且批大小为 4,我们将字母分为 4 个长度为 6 的序列:

使用nn.Transformer和torchtext的序列到序列建模 - 图2

这些列被模型视为独立的,这意味着无法了解GF的依赖性,但可以进行更有效的批量。

  1. import io
  2. import torch
  3. from torchtext.utils import download_from_url, extract_archive
  4. from torchtext.data.utils import get_tokenizer
  5. from torchtext.vocab import build_vocab_from_iterator
  6. url = 'https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip'
  7. test_filepath, valid_filepath, train_filepath = extract_archive(download_from_url(url))
  8. tokenizer = get_tokenizer('basic_english')
  9. vocab = build_vocab_from_iterator(map(tokenizer,
  10. iter(io.open(train_filepath,
  11. encoding="utf8"))))
  12. def data_process(raw_text_iter):
  13. data = [torch.tensor([vocab[token] for token in tokenizer(item)],
  14. dtype=torch.long) for item in raw_text_iter]
  15. return torch.cat(tuple(filter(lambda t: t.numel() > 0, data)))
  16. train_data = data_process(iter(io.open(train_filepath, encoding="utf8")))
  17. val_data = data_process(iter(io.open(valid_filepath, encoding="utf8")))
  18. test_data = data_process(iter(io.open(test_filepath, encoding="utf8")))
  19. device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  20. def batchify(data, bsz):
  21. # Divide the dataset into bsz parts.
  22. nbatch = data.size(0) // bsz
  23. # Trim off any extra elements that wouldn't cleanly fit (remainders).
  24. data = data.narrow(0, 0, nbatch * bsz)
  25. # Evenly divide the data across the bsz batches.
  26. data = data.view(bsz, -1).t().contiguous()
  27. return data.to(device)
  28. batch_size = 20
  29. eval_batch_size = 10
  30. train_data = batchify(train_data, batch_size)
  31. val_data = batchify(val_data, eval_batch_size)
  32. test_data = batchify(test_data, eval_batch_size)

生成输入序列和目标序列的函数

get_batch()函数为转换器模型生成输入和目标序列。 它将源数据细分为长度为bptt的块。 对于语言建模任务,模型需要以下单词作为Target。 例如,如果bptt值为 2,则i = 0时,我们将获得以下两个变量:

../_img/transformer_input_target.png

应该注意的是,这些块沿着维度 0,与Transformer模型中的S维度一致。 批量尺寸N沿尺寸 1。

  1. bptt = 35
  2. def get_batch(source, i):
  3. seq_len = min(bptt, len(source) - 1 - i)
  4. data = source[i:i+seq_len]
  5. target = source[i+1:i+1+seq_len].reshape(-1)
  6. return data, target

启动实例

使用下面的超参数建立模型。 vocab的大小等于vocab对象的长度。

  1. ntokens = len(vocab.stoi) # the size of vocabulary
  2. emsize = 200 # embedding dimension
  3. nhid = 200 # the dimension of the feedforward network model in nn.TransformerEncoder
  4. nlayers = 2 # the number of nn.TransformerEncoderLayer in nn.TransformerEncoder
  5. nhead = 2 # the number of heads in the multiheadattention models
  6. dropout = 0.2 # the dropout value
  7. model = TransformerModel(ntokens, emsize, nhead, nhid, nlayers, dropout).to(device)

运行模型

CrossEntropyLoss用于跟踪损失,SGD实现随机梯度下降方法作为优化器。 初始学习率设置为 5.0。 StepLR用于通过历时调整学习率。 在训练期间,我们使用nn.utils.clip_grad_norm_函数将所有梯度缩放在一起,以防止爆炸。

  1. criterion = nn.CrossEntropyLoss()
  2. lr = 5.0 # learning rate
  3. optimizer = torch.optim.SGD(model.parameters(), lr=lr)
  4. scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)
  5. import time
  6. def train():
  7. model.train() # Turn on the train mode
  8. total_loss = 0.
  9. start_time = time.time()
  10. src_mask = model.generate_square_subsequent_mask(bptt).to(device)
  11. for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
  12. data, targets = get_batch(train_data, i)
  13. optimizer.zero_grad()
  14. if data.size(0) != bptt:
  15. src_mask = model.generate_square_subsequent_mask(data.size(0)).to(device)
  16. output = model(data, src_mask)
  17. loss = criterion(output.view(-1, ntokens), targets)
  18. loss.backward()
  19. torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
  20. optimizer.step()
  21. total_loss += loss.item()
  22. log_interval = 200
  23. if batch % log_interval == 0 and batch > 0:
  24. cur_loss = total_loss / log_interval
  25. elapsed = time.time() - start_time
  26. print('| epoch {:3d} | {:5d}/{:5d} batches | '
  27. 'lr {:02.2f} | ms/batch {:5.2f} | '
  28. 'loss {:5.2f} | ppl {:8.2f}'.format(
  29. epoch, batch, len(train_data) // bptt, scheduler.get_lr()[0],
  30. elapsed * 1000 / log_interval,
  31. cur_loss, math.exp(cur_loss)))
  32. total_loss = 0
  33. start_time = time.time()
  34. def evaluate(eval_model, data_source):
  35. eval_model.eval() # Turn on the evaluation mode
  36. total_loss = 0.
  37. src_mask = model.generate_square_subsequent_mask(bptt).to(device)
  38. with torch.no_grad():
  39. for i in range(0, data_source.size(0) - 1, bptt):
  40. data, targets = get_batch(data_source, i)
  41. if data.size(0) != bptt:
  42. src_mask = model.generate_square_subsequent_mask(data.size(0)).to(device)
  43. output = eval_model(data, src_mask)
  44. output_flat = output.view(-1, ntokens)
  45. total_loss += len(data) * criterion(output_flat, targets).item()
  46. return total_loss / (len(data_source) - 1)

循环遍历。 如果验证损失是迄今为止迄今为止最好的,请保存模型。 在每个周期之后调整学习率。

  1. best_val_loss = float("inf")
  2. epochs = 3 # The number of epochs
  3. best_model = None
  4. for epoch in range(1, epochs + 1):
  5. epoch_start_time = time.time()
  6. train()
  7. val_loss = evaluate(model, val_data)
  8. print('-' * 89)
  9. print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
  10. 'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
  11. val_loss, math.exp(val_loss)))
  12. print('-' * 89)
  13. if val_loss < best_val_loss:
  14. best_val_loss = val_loss
  15. best_model = model
  16. scheduler.step()

出:

  1. | epoch 1 | 200/ 2928 batches | lr 5.00 | ms/batch 30.78 | loss 8.03 | ppl 3085.47
  2. | epoch 1 | 400/ 2928 batches | lr 5.00 | ms/batch 29.85 | loss 6.83 | ppl 929.53
  3. | epoch 1 | 600/ 2928 batches | lr 5.00 | ms/batch 29.92 | loss 6.41 | ppl 610.71
  4. | epoch 1 | 800/ 2928 batches | lr 5.00 | ms/batch 29.88 | loss 6.29 | ppl 539.54
  5. | epoch 1 | 1000/ 2928 batches | lr 5.00 | ms/batch 29.95 | loss 6.17 | ppl 479.92
  6. | epoch 1 | 1200/ 2928 batches | lr 5.00 | ms/batch 29.95 | loss 6.15 | ppl 468.35
  7. | epoch 1 | 1400/ 2928 batches | lr 5.00 | ms/batch 29.95 | loss 6.11 | ppl 450.25
  8. | epoch 1 | 1600/ 2928 batches | lr 5.00 | ms/batch 29.95 | loss 6.10 | ppl 445.77
  9. | epoch 1 | 1800/ 2928 batches | lr 5.00 | ms/batch 29.97 | loss 6.02 | ppl 409.90
  10. | epoch 1 | 2000/ 2928 batches | lr 5.00 | ms/batch 29.92 | loss 6.01 | ppl 408.66
  11. | epoch 1 | 2200/ 2928 batches | lr 5.00 | ms/batch 29.94 | loss 5.90 | ppl 363.89
  12. | epoch 1 | 2400/ 2928 batches | lr 5.00 | ms/batch 29.94 | loss 5.96 | ppl 388.68
  13. | epoch 1 | 2600/ 2928 batches | lr 5.00 | ms/batch 29.94 | loss 5.95 | ppl 382.60
  14. | epoch 1 | 2800/ 2928 batches | lr 5.00 | ms/batch 29.95 | loss 5.88 | ppl 358.87
  15. -----------------------------------------------------------------------------------------
  16. | end of epoch 1 | time: 91.45s | valid loss 5.85 | valid ppl 348.17
  17. -----------------------------------------------------------------------------------------
  18. | epoch 2 | 200/ 2928 batches | lr 4.51 | ms/batch 30.09 | loss 5.86 | ppl 351.70
  19. | epoch 2 | 400/ 2928 batches | lr 4.51 | ms/batch 29.97 | loss 5.85 | ppl 347.85
  20. | epoch 2 | 600/ 2928 batches | lr 4.51 | ms/batch 29.98 | loss 5.67 | ppl 288.80
  21. | epoch 2 | 800/ 2928 batches | lr 4.51 | ms/batch 29.92 | loss 5.70 | ppl 299.81
  22. | epoch 2 | 1000/ 2928 batches | lr 4.51 | ms/batch 29.95 | loss 5.65 | ppl 285.57
  23. | epoch 2 | 1200/ 2928 batches | lr 4.51 | ms/batch 29.99 | loss 5.68 | ppl 293.48
  24. | epoch 2 | 1400/ 2928 batches | lr 4.51 | ms/batch 29.96 | loss 5.69 | ppl 296.90
  25. | epoch 2 | 1600/ 2928 batches | lr 4.51 | ms/batch 29.96 | loss 5.72 | ppl 303.83
  26. | epoch 2 | 1800/ 2928 batches | lr 4.51 | ms/batch 29.93 | loss 5.66 | ppl 285.90
  27. | epoch 2 | 2000/ 2928 batches | lr 4.51 | ms/batch 29.93 | loss 5.67 | ppl 289.58
  28. | epoch 2 | 2200/ 2928 batches | lr 4.51 | ms/batch 29.97 | loss 5.55 | ppl 257.20
  29. | epoch 2 | 2400/ 2928 batches | lr 4.51 | ms/batch 29.96 | loss 5.65 | ppl 283.92
  30. | epoch 2 | 2600/ 2928 batches | lr 4.51 | ms/batch 29.95 | loss 5.65 | ppl 283.76
  31. | epoch 2 | 2800/ 2928 batches | lr 4.51 | ms/batch 29.95 | loss 5.60 | ppl 269.90
  32. -----------------------------------------------------------------------------------------
  33. | end of epoch 2 | time: 91.37s | valid loss 5.60 | valid ppl 270.66
  34. -----------------------------------------------------------------------------------------
  35. | epoch 3 | 200/ 2928 batches | lr 4.29 | ms/batch 30.12 | loss 5.60 | ppl 269.95
  36. | epoch 3 | 400/ 2928 batches | lr 4.29 | ms/batch 29.92 | loss 5.62 | ppl 274.84
  37. | epoch 3 | 600/ 2928 batches | lr 4.29 | ms/batch 29.96 | loss 5.41 | ppl 222.98
  38. | epoch 3 | 800/ 2928 batches | lr 4.29 | ms/batch 29.93 | loss 5.48 | ppl 240.15
  39. | epoch 3 | 1000/ 2928 batches | lr 4.29 | ms/batch 29.94 | loss 5.43 | ppl 229.16
  40. | epoch 3 | 1200/ 2928 batches | lr 4.29 | ms/batch 29.94 | loss 5.48 | ppl 239.42
  41. | epoch 3 | 1400/ 2928 batches | lr 4.29 | ms/batch 29.95 | loss 5.49 | ppl 242.87
  42. | epoch 3 | 1600/ 2928 batches | lr 4.29 | ms/batch 29.93 | loss 5.52 | ppl 250.16
  43. | epoch 3 | 1800/ 2928 batches | lr 4.29 | ms/batch 29.93 | loss 5.47 | ppl 237.70
  44. | epoch 3 | 2000/ 2928 batches | lr 4.29 | ms/batch 29.94 | loss 5.49 | ppl 241.36
  45. | epoch 3 | 2200/ 2928 batches | lr 4.29 | ms/batch 29.92 | loss 5.36 | ppl 211.91
  46. | epoch 3 | 2400/ 2928 batches | lr 4.29 | ms/batch 29.95 | loss 5.47 | ppl 237.16
  47. | epoch 3 | 2600/ 2928 batches | lr 4.29 | ms/batch 29.94 | loss 5.47 | ppl 236.47
  48. | epoch 3 | 2800/ 2928 batches | lr 4.29 | ms/batch 29.92 | loss 5.41 | ppl 223.08
  49. -----------------------------------------------------------------------------------------
  50. | end of epoch 3 | time: 91.32s | valid loss 5.61 | valid ppl 272.10
  51. -----------------------------------------------------------------------------------------

使用测试数据集评估模型

应用最佳模型以检查测试数据集的结果。

  1. test_loss = evaluate(best_model, test_data)
  2. print('=' * 89)
  3. print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
  4. test_loss, math.exp(test_loss)))
  5. print('=' * 89)

出:

  1. =========================================================================================
  2. | End of training | test loss 5.52 | test ppl 249.05
  3. =========================================================================================

脚本的总运行时间:(4 分钟 50.218 秒)

下载 Python 源码:transformer_tutorial.py

下载 Jupyter 笔记本:transformer_tutorial.ipynb

由 Sphinx 画廊生成的画廊