题目描述
给你一个字符串 s,找到 s 中最长的回文子串。
示例 1:
输入:s = “babad” 输出:”bab” 解释:”aba” 同样是符合题意的答案。
示例 2:
输入:s = “cbbd” 输出:”bb”
提示:
1 <= s.length <= 1000
s 仅由数字和英文字母组成
个人解法
JavaScript
function fun(s) {let i = 0;let j = s.length - 1;while(i < j){if(s[i] === s[j]){i ++;j --;}else {return false;}}return true;}/*** @param {string} s* @return {string}*/var longestPalindrome = function (s) {let str = '';let subStr = '';const length = s.length;if (length <= 0) {return "";}for (let i = 0; i < length; i++) {if (length - i < str.length) {break;}for (let j = i + 1; j <= length; j++) {if (j - i < str.length) {continue;}subStr = s.substring(i, j);if (fun(subStr)) {if (subStr.length > str.length) {str = subStr;}}}}return str;};
Java(暴力解法)
大致思路就是从字串长度最大(字符串原始长度)开始找,每次减1,找到的第一个回文子串便是我们要的答案。
值得注意的是,我们在进行回文数判断的时候,拿事先取出的数组进行判断(将字符串转化为一个char数组)
class Solution {public String longestPalindrome(String s) {String longS = s.substring(0,1);char[] cs = s.toCharArray();int max = 1, j = 0,len=s.length();for(max=len;max>=1;max--){for(j=0;j<=len-max;j++){if (judge(cs,j, j + max-1)) {longS=s.substring(j, j + max);max=0;break;}}}return longS;}private boolean judge(char[] cs, int i, int j) {while (i < j) {if (cs[i] != cs[j]) {return false;}i++;j--;}return true;}}
更优解法
JavaScript
动态规划
/*** @param {string} s* @return {string}*/var longestPalindrome = function (s) {let str = '';const length = s.length;let arr = new Array(length);if (length <= 0) {return "";}if(length === 1){return s;}for (let i = 0; i < length; i++) {arr[i] = new Array(length);}for (let i = 0; i < length; i++) {for (let j = 0; j < length; j++) {if (i === j) {arr[i][j] = true;}arr[i][j] = null;}}for (let L = 1; L <= length; L++) {for (let i = 0; i < length; i++) {let j = L + i - 1;if (j >= length) {break;}if (s[i] !== s[j]) {arr[i][j] = false;} else {if (j - i < 3) {arr[i][j] = true;} else {arr[i][j] = arr[i + 1][j - 1];}}if (arr[i][j] && j - i + 1 > str.length) {str = s.substring(i, j + 1);}}}return str;};
中心扩散法
/*** @param {string} s* @return {string}*/function longestPalindrome(s) {let Resleft = 0;let Resright = 0;let maxLen = 0;let i = 0; //设i为中心的索引while (i < s.length) {let left = i - 1;while (left >= 0 && s[i] === s[left]) {left--;}let right = i + 1;while (right < s.length && s[i] === s[right]) {right++;}const end = right; //这里的right是右边第一个跟中心s[i]不相等的字符索引,保存下来,等会i直接跳到end处,可减少重复中心的计算while (left >= 0 && right < s.length && s[left] === s[right]) {left--;right++;}if (maxLen < right - left - 1) {maxLen = right - left - 1;Resleft = left + 1;Resright = right - 1;}i = end;}return s.substring(Resleft, Resright + 1);};
Java
动态规划
public class Solution {public String longestPalindrome(String s) {int len = s.length();//当长度为1时,直接返回sif (len < 2) {return s;}int maxLen = 1;int begin = 0;// dp[i][j] 表示 s[i..j] 是否是回文串boolean[][] dp = new boolean[len][len];// 初始化:所有长度为 1 的子串都是回文串for (int i = 0; i < len; i++) {dp[i][i] = true;}//将字符串转化为字符数组,便于后面进行s字符串第i位和第j位的字符是否相等的判断char[] charArray = s.toCharArray();// 递推开始// 先枚举子串长度for (int L = 2; L <= len; L++) {// 枚举左边界,左边界的上限设置可以宽松一些for (int i = 0; i < len; i++) {// 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得int j = L + i - 1;// 如果右边界越界,就可以退出当前循环if (j >= len) {break;}//charArray[i] != charArray[j]代表s[i...j]必定不是回文串if (charArray[i] != charArray[j]) {dp[i][j] = false;} else {//bb,aba 存在两种初始情况if (j - i < 3) {dp[i][j] = true;} else {//i位j位相等,s[i...j]是否为回文串取决于s[i+1...j-1]//a bcb a(是)a bcd a(不是)dp[i][j] = dp[i + 1][j - 1];}}// 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置if (dp[i][j] && j - i + 1 > maxLen) {maxLen = j - i + 1;begin = i;}}}return s.substring(begin, begin + maxLen);}}
中心扩散法
class Solution {public String longestPalindrome(String s) {if (s == null || s.length() < 1) {return "";}int start = 0, end = 0;for (int i = 0; i < s.length(); i++) {//初始中心可能是a b a(b是中心)也可能是a bb a(bb是中心)int len1 = expandAroundCenter(s, i, i);int len2 = expandAroundCenter(s, i, i + 1);int len = Math.max(len1, len2);if (len > end - start) {start = i - (len - 1) / 2;end = i + len / 2;}}return s.substring(start, end + 1);}//从初始中心开始拓展,如果是回文数,每次继续判断边界两位置字符是否一样public int expandAroundCenter(String s, int left, int right) {while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {--left;++right;}return right - left - 1;}}
