题目描述
给你一个只包含 ‘(‘ 和 ‘)’ 的字符串,找出最长有效(格式正确且连续)括号子串的长度。
示例 1:
输入:s = “(()”
输出:2
解释:最长有效括号子串是 “()”
示例 2:
输入:s = “)()())”
输出:4
解释:最长有效括号子串是 “()()”
示例 3:
输入:s = “”
输出:0
提示:
Javascript
暴力解法,目前是我最优化之后的暴力解法,但是还是超时了
/** @lc app=leetcode.cn id=32 lang=javascript** [32] 最长有效括号*/// @lc code=startvar check = function (s, left, right) {const arr = [];let top = -1;if (s[left] === ')' || s[right] === '(') {return false;}for (let i = left; i <= right; i++) {if(top)if (top > -1 && arr[top] === '(' && s[i] === ')') {arr.pop();top--;} else {arr.push(s[i]);top++;}}return arr.length === 0;}/*** @param {string} s* @return {number}*/var longestValidParentheses = function (s) {if (s.length < 2) {return 0;}let left = 0;let right = s.length - 1;while (s[left] !== '(' && left < s.length) left++;while (s[right] !== ')' && right > 0) right--;let max = 0;while (left <= right) {let i = left;if(s[left] === ')'){left ++;continue;}if (max > right - i + 1) {break;}let j = (right - i + 1) % 2 === 0 ? right : right - 1;for (; j > i; j -= 2) {if (max > j - i + 1) {break;}if (check(s, i, j)) {max = Math.max(max, j - i + 1);left = j;break;}}console.log(left);left ++;}return max;};// @lc code=end
Java(栈)
class Solution {public int longestValidParentheses(String s) {char[] chars=s.toCharArray();int len=s.length(),max=0,n=-1;Stack<Integer> stack=new Stack<>();stack.push(-1);for (int i=0;i<len;i++){//()(()()-1if (chars[i]=='('){stack.push(i);}else {stack.pop();if (stack.empty()){stack.push(i);}else {max=Math.max(max,i-stack.peek());}}}return max;}}
其他解法
Java
动态规划
class Solution {public int longestValidParentheses(String s) {int maxans = 0;int[] dp = new int[s.length()];for (int i = 1; i < s.length(); i++) {if (s.charAt(i) == ')') {if (s.charAt(i - 1) == '(') {dp[i] = (i >= 2 ? dp[i - 2] : 0) + 2;} else if (i - dp[i - 1] > 0 && s.charAt(i - dp[i - 1] - 1) == '(') {dp[i] = dp[i - 1] + ((i - dp[i - 1]) >= 2 ? dp[i - dp[i - 1] - 2] : 0) + 2;}maxans = Math.max(maxans, dp[i]);}}return maxans;}}

class Solution {public int longestValidParentheses(String s) {int left = 0, right = 0, maxlength = 0;for (int i = 0; i < s.length(); i++) {if (s.charAt(i) == '(') {left++;} else {right++;}if (left == right) {maxlength = Math.max(maxlength, 2 * right);} else if (right > left) {left = right = 0;}}left = right = 0;for (int i = s.length() - 1; i >= 0; i--) {if (s.charAt(i) == '(') {left++;} else {right++;}if (left == right) {maxlength = Math.max(maxlength, 2 * left);} else if (left > right) {left = right = 0;}}return maxlength;}}
Javascript
动态规划
const longestValidParentheses = (s) => {let maxLen = 0;const len = s.length;const dp = new Array(len).fill(0);for (let i = 1; i < len; i++) {if (s[i] == ')') {if (s[i - 1] == '(') {if (i - 2 >= 0) {dp[i] = dp[i - 2] + 2;} else {dp[i] = 2;}} else if (s[i - dp[i - 1] - 1] == '(') {if (i - dp[i - 1] - 2 >= 0) {dp[i] = dp[i - 1] + 2 + dp[i - dp[i - 1] - 2];} else {dp[i] = dp[i - 1] + 2;}}}maxLen = Math.max(maxLen, dp[i]);}return maxLen;};
栈
/** @lc app=leetcode.cn id=32 lang=javascript** [32] 最长有效括号*/// @lc code=start/*** @param {string} s* @return {number}*/const longestValidParentheses = (s) => {let maxLen = 0;const len = s.length;const stack = [-1];let index = 0;for (let i = 0; i < len; i++) {if (s[i] === '(') {stack.push(i);index++;} else {stack.pop();index--;if (index > -1) {maxLen = Math.max(maxLen, i - stack[index]);} else {stack.push(i);index++;}}}return maxLen;};// @lc code=end
