from math import logimport operatordef createDataSet(): dataSet = [[0, 0, 0, 0, 'N'], [0, 0, 0, 1, 'N'], [1, 0, 0, 0, 'Y'], [2, 1, 0, 0, 'Y'], [2, 2, 1, 0, 'Y'], [2, 2, 1, 1, 'N'], [1, 2, 1, 1, 'Y']] labels = ['outlook', 'temperature', 'humidity', 'windy'] return dataSet, labelsdef calcShannonEnt(dataSet): # 计算熵 numEntries = len(dataSet) labelCounts = {} for featVec in dataSet: currentLabel = featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 # 数每一类各多少个, {'Y': 4, 'N': 3} shannonEnt = 0.0 for key in labelCounts: prob = float(labelCounts[key]) / numEntries shannonEnt -= prob * log(prob, 2) return shannonEntdef chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0]) - 1 # feature个数 baseEntropy = calcShannonEnt(dataSet) # 整个dataset的熵 bestInfoGainRatio = 0.0 bestFeature = -1 for i in range(numFeatures): featList = [example[i] for example in dataSet] # 每个feature的list uniqueVals = set(featList) # 每个list的唯一值集合 newEntropy = 0.0 splitInfo = 0.0 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) # 每个唯一值对应的剩余feature的组成子集 prob = len(subDataSet) / float(len(dataSet)) newEntropy += prob * calcShannonEnt(subDataSet) splitInfo += -prob * log(prob, 2) infoGain = baseEntropy - newEntropy # 这个feature的infoGain if (splitInfo == 0): # fix the overflow bug continue infoGainRatio = infoGain / splitInfo # 这个feature的infoGainRatio增益率 if (infoGainRatio > bestInfoGainRatio): # 选择最大的gain ratio bestInfoGainRatio = infoGainRatio bestFeature = i # 选择最大的gain ratio对应的feature return bestFeaturedef splitDataSet(dataSet, axis, value): retDataSet = [] for featVec in dataSet: if featVec[axis] == value: # 只看当第i列的值=value时的item reduceFeatVec = featVec[:axis] # featVec的第i列给除去 reduceFeatVec.extend(featVec[axis + 1:]) retDataSet.append(reduceFeatVec) return retDataSetdef createTree(dataSet, labels): classList = [example[-1] for example in dataSet] # ['N', 'N', 'Y', 'Y', 'Y', 'N', 'Y'] if classList.count(classList[0]) == len(classList): # classList所有元素都相等,即类别完全相同,停止划分 return classList[0] # splitDataSet(dataSet, 0, 0)此时全是N,返回N if len(dataSet[0]) == 1: # [0, 0, 0, 0, 'N'] # 遍历完所有特征时返回出现次数最多的 return majorityCnt(classList) bestFeat = chooseBestFeatureToSplit(dataSet) # 0-> 2 # 选择最大的gain ratio对应的feature bestFeatLabel = labels[bestFeat] # outlook -> windy myTree = {bestFeatLabel: {}} # 多重字典构建树{'outlook': {0: 'N' del (labels[bestFeat]) # ['temperature', 'humidity', 'windy'] -> ['temperature', 'humidity'] featValues = [example[bestFeat] for example in dataSet] # [0, 0, 1, 2, 2, 2, 1] uniqueVals = set(featValues) for value in uniqueVals: subLabels = labels[:] # ['temperature', 'humidity', 'windy'] myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels) # 划分数据,为下一层计算准备 return myTreedef majorityCnt(classList): # 如果属性完全相同,却不具有相同的类别,则采用少数服从多数的原则进行划分 classCount = {} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0 else: classCount[vote] += 1 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]
https://github.com/cdqncn/JueCeShu/blob/master/myTree.py