评估方法实现
所有函数的具体说明都在参考文献[1]里,这里不做过多的赘述,只讨论实现。
github:图像清晰度评估算法包(有示例)
1 Brenner 梯度函数
def brenner(img):''':param img:narray 二维灰度图像:return: float 图像约清晰越大'''shape = np.shape(img)out = 0for x in range(0, shape[0]-2):for y in range(0, shape[1]):out+=(int(img[x+2,y])-int(img[x,y]))**2return out
2 Laplacian梯度函数
def Laplacian(img):''':param img:narray 二维灰度图像:return: float 图像约清晰越大'''return cv2.Laplacian(img,cv2.CV_64F).var()
3 SMD(灰度方差)
def SMD(img):''':param img:narray 二维灰度图像:return: float 图像约清晰越大'''shape = np.shape(img)out = 0for x in range(0, shape[0]-1):for y in range(1, shape[1]):out+=math.fabs(int(img[x,y])-int(img[x,y-1]))out+=math.fabs(int(img[x,y]-int(img[x+1,y])))return out
4 SMD2(灰度方差乘积)
def SMD2(img):''':param img:narray 二维灰度图像:return: float 图像约清晰越大'''shape = np.shape(img)out = 0for x in range(0, shape[0]-1):for y in range(0, shape[1]-1):out+=math.fabs(int(img[x,y])-int(img[x+1,y]))*math.fabs(int(img[x,y]-int(img[x,y+1])))return out
5 方差函数
def variance(img):''':param img:narray 二维灰度图像:return: float 图像约清晰越大'''out = 0u = np.mean(img)shape = np.shape(img)for x in range(0,shape[0]):for y in range(0,shape[1]):out+=(img[x,y]-u)**2return out
6 能量梯度函数
def energy(img):''':param img:narray 二维灰度图像:return: float 图像约清晰越大'''shape = np.shape(img)out = 0for x in range(0, shape[0]-1):for y in range(0, shape[1]-1):out+=((int(img[x+1,y])-int(img[x,y]))**2)+((int(img[x,y+1]-int(img[x,y])))**2)return out
7 Vollath函数
def Vollath(img):''':param img:narray 二维灰度图像:return: float 图像约清晰越大'''shape = np.shape(img)u = np.mean(img)out = -shape[0]*shape[1]*(u**2)for x in range(0, shape[0]-1):for y in range(0, shape[1]):out+=int(img[x,y])*int(img[x+1,y])return out
8 熵函数
def entropy(img):''':param img:narray 二维灰度图像:return: float 图像约清晰越大'''out = 0count = np.shape(img)[0]*np.shape(img)[1]p = np.bincount(np.array(img).flatten())for i in range(0, len(p)):if p[i]!=0:out-=p[i]*math.log(p[i]/count)/countreturn out
参考文献
[1] 图像清晰度的评价指标

