线性回归的简洁实现
:label:sec_linear_concise
在过去的几年里,出于对深度学习强烈的兴趣,
许多公司、学者和业余爱好者开发了各种成熟的开源框架。
这些框架可以自动化基于梯度的学习算法中重复性的工作。
在 :numref:sec_linear_scratch
中,我们只运用了:
(1)通过张量来进行数据存储和线性代数;
(2)通过自动微分来计算梯度。
实际上,由于数据迭代器、损失函数、优化器和神经网络层很常用,
现代深度学习库也为我们实现了这些组件。
在本节中,我们将介绍如何(通过使用深度学习框架来简洁地实现)
:numref:sec_linear_scratch
中的(线性回归模型)。
生成数据集
与 :numref:sec_linear_scratch
中类似,我们首先[生成数据集]。
```{.python .input} from d2l import mxnet as d2l from mxnet import autograd, gluon, np, npx npx.set_np()
```{.python .input}
#@tab pytorch
from d2l import torch as d2l
import numpy as np
import torch
from torch.utils import data
```{.python .input}
@tab tensorflow
from d2l import tensorflow as d2l import numpy as np import tensorflow as tf
```{.python .input}
#@tab all
true_w = d2l.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
读取数据集
我们可以[调用框架中现有的API来读取数据]。
我们将features
和labels
作为API的参数传递,并通过数据迭代器指定batch_size
。
此外,布尔值is_train
表示是否希望数据迭代器对象在每个迭代周期内打乱数据。
```{.python .input} def load_array(data_arrays, batch_size, is_train=True): #@save “””构造一个Gluon数据迭代器””” dataset = gluon.data.ArrayDataset(*data_arrays) return gluon.data.DataLoader(dataset, batch_size, shuffle=is_train)
```{.python .input}
#@tab pytorch
def load_array(data_arrays, batch_size, is_train=True): #@save
"""构造一个PyTorch数据迭代器"""
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset, batch_size, shuffle=is_train)
```{.python .input}
@tab tensorflow
def load_array(data_arrays, batch_size, is_train=True): #@save “””构造一个TensorFlow数据迭代器””” dataset = tf.data.Dataset.from_tensor_slices(data_arrays) if is_train: dataset = dataset.shuffle(buffer_size=1000) dataset = dataset.batch(batch_size) return dataset
```{.python .input}
#@tab all
batch_size = 10
data_iter = load_array((features, labels), batch_size)
使用data_iter
的方式与我们在 :numref:sec_linear_scratch
中使用data_iter
函数的方式相同。为了验证是否正常工作,让我们读取并打印第一个小批量样本。
与 :numref:sec_linear_scratch
不同,这里我们使用iter
构造Python迭代器,并使用next
从迭代器中获取第一项。
```{.python .input}
@tab all
next(iter(data_iter))
## 定义模型
当我们在 :numref:`sec_linear_scratch`中实现线性回归时,
我们明确定义了模型参数变量,并编写了计算的代码,这样通过基本的线性代数运算得到输出。
但是,如果模型变得更加复杂,且当你几乎每天都需要实现模型时,你会想简化这个过程。
这种情况类似于为自己的博客从零开始编写网页。
做一两次是有益的,但如果每个新博客你就花一个月的时间重新开始编写网页,那并不高效。
对于标准深度学习模型,我们可以[**使用框架的预定义好的层**]。这使我们只需关注使用哪些层来构造模型,而不必关注层的实现细节。
我们首先定义一个模型变量`net`,它是一个`Sequential`类的实例。
`Sequential`类将多个层串联在一起。
当给定输入数据时,`Sequential`实例将数据传入到第一层,
然后将第一层的输出作为第二层的输入,以此类推。
在下面的例子中,我们的模型只包含一个层,因此实际上不需要`Sequential`。
但是由于以后几乎所有的模型都是多层的,在这里使用`Sequential`会让你熟悉“标准的流水线”。
回顾 :numref:`fig_single_neuron`中的单层网络架构,
这一单层被称为*全连接层*(fully-connected layer),
因为它的每一个输入都通过矩阵-向量乘法得到它的每个输出。
:begin_tab:`mxnet`
在Gluon中,全连接层在`Dense`类中定义。
由于我们只想得到一个标量输出,所以我们将该数字设置为1。
值得注意的是,为了方便使用,Gluon并不要求我们为每个层指定输入的形状。
所以在这里,我们不需要告诉Gluon有多少输入进入这一层。
当我们第一次尝试通过我们的模型传递数据时,例如,当后面执行`net(X)`时,
Gluon会自动推断每个层输入的形状。
我们稍后将详细介绍这种工作机制。
:end_tab:
:begin_tab:`pytorch`
在PyTorch中,全连接层在`Linear`类中定义。
值得注意的是,我们将两个参数传递到`nn.Linear`中。
第一个指定输入特征形状,即2,第二个指定输出特征形状,输出特征形状为单个标量,因此为1。
:end_tab:
:begin_tab:`tensorflow`
在Keras中,全连接层在`Dense`类中定义。
由于我们只想得到一个标量输出,所以我们将该数字设置为1。
值得注意的是,为了方便使用,Keras不要求我们为每个层指定输入形状。
所以在这里,我们不需要告诉Keras有多少输入进入这一层。
当我们第一次尝试通过我们的模型传递数据时,例如,当后面执行`net(X)`时,
Keras会自动推断每个层输入的形状。
我们稍后将详细介绍这种工作机制。
:end_tab:
```{.python .input}
# nn是神经网络的缩写
from mxnet.gluon import nn
net = nn.Sequential()
net.add(nn.Dense(1))
```{.python .input}
@tab pytorch
nn是神经网络的缩写
from torch import nn net = nn.Sequential(nn.Linear(2, 1))
```{.python .input}
#@tab tensorflow
# keras是TensorFlow的高级API
net = tf.keras.Sequential()
net.add(tf.keras.layers.Dense(1))
(初始化模型参数)
在使用net
之前,我们需要初始化模型参数。
如在线性回归模型中的权重和偏置。
深度学习框架通常有预定义的方法来初始化参数。
在这里,我们指定每个权重参数应该从均值为0、标准差为0.01的正态分布中随机采样,
偏置参数将初始化为零。
:begin_tab:mxnet
我们从MXNet导入initializer
模块,这个模块提供了各种模型参数初始化方法。
Gluon将init
作为访问initializer
包的快捷方式。
我们可以通过调用init.Normal(sigma=0.01)
来指定初始化权重的方法。
默认情况下,偏置参数初始化为零。
:end_tab:
:begintab:pytorch
正如我们在构造nn.Linear
时指定输入和输出尺寸一样,
现在我们能直接访问参数以设定它们的初始值。
我们通过net[0]
选择网络中的第一个图层,
然后使用weight.data
和bias.data
方法访问参数。
我们还可以使用替换方法`normal和
fill_`来重写参数值。
:end_tab:
:begin_tab:tensorflow
TensorFlow中的initializers
模块提供了多种模型参数初始化方法。
在Keras中最简单的指定初始化方法是在创建层时指定kernel_initializer
。
在这里,我们重新创建了net
。
:end_tab:
```{.python .input} from mxnet import init net.initialize(init.Normal(sigma=0.01))
```{.python .input}
#@tab pytorch
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)
```{.python .input}
@tab tensorflow
initializer = tf.initializers.RandomNormal(stddev=0.01) net = tf.keras.Sequential() net.add(tf.keras.layers.Dense(1, kernel_initializer=initializer))
:begin_tab:`mxnet`
上面的代码可能看起来很简单,但是你应该注意到这里的一个细节:
我们正在为网络初始化参数,而Gluon还不知道输入将有多少维!
网络的输入可能有2维,也可能有2000维。
Gluon让我们避免了这个问题,在后端执行时,初始化实际上是*推迟*(deferred)执行的,
只有在我们第一次尝试通过网络传递数据时才会进行真正的初始化。
请注意,因为参数还没有初始化,所以我们不能访问或操作它们。
:end_tab:
:begin_tab:`pytorch`
:end_tab:
:begin_tab:`tensorflow`
上面的代码可能看起来很简单,但是你应该注意到这里的一个细节:
我们正在为网络初始化参数,而Keras还不知道输入将有多少维!
网络的输入可能有2维,也可能有2000维。
Keras让我们避免了这个问题,在后端执行时,初始化实际上是*推迟*(deferred)执行的。
只有在我们第一次尝试通过网络传递数据时才会进行真正的初始化。
请注意,因为参数还没有初始化,所以我们不能访问或操作它们。
:end_tab:
## 定义损失函数
:begin_tab:`mxnet`
在Gluon中,`loss`模块定义了各种损失函数。
在这个例子中,我们将使用Gluon中的均方误差(`L2Loss`)。
:end_tab:
:begin_tab:`pytorch`
[**计算均方误差使用的是`MSELoss`类,也称为平方$L_2$范数**]。
默认情况下,它返回所有样本损失的平均值。
:end_tab:
:begin_tab:`tensorflow`
计算均方误差使用的是`MeanSquaredError`类,也称为平方$L_2$范数。
默认情况下,它返回所有样本损失的平均值。
:end_tab:
```{.python .input}
loss = gluon.loss.L2Loss()
```{.python .input}
@tab pytorch
loss = nn.MSELoss()
```{.python .input}
#@tab tensorflow
loss = tf.keras.losses.MeanSquaredError()
定义优化算法
:begin_tab:mxnet
小批量随机梯度下降算法是一种优化神经网络的标准工具,
Gluon通过Trainer
类支持该算法的许多变种。
当我们实例化Trainer
时,我们要指定优化的参数
(可通过net.collect_params()
从我们的模型net
中获得)、
我们希望使用的优化算法(sgd
)以及优化算法所需的超参数字典。
小批量随机梯度下降只需要设置learning_rate
值,这里设置为0.03。
:end_tab:
:begin_tab:pytorch
小批量随机梯度下降算法是一种优化神经网络的标准工具,
PyTorch在optim
模块中实现了该算法的许多变种。
当我们(实例化一个SGD
实例)时,我们要指定优化的参数
(可通过net.parameters()
从我们的模型中获得)以及优化算法所需的超参数字典。
小批量随机梯度下降只需要设置lr
值,这里设置为0.03。
:end_tab:
:begin_tab:tensorflow
小批量随机梯度下降算法是一种优化神经网络的标准工具,
Keras在optimizers
模块中实现了该算法的许多变种。
小批量随机梯度下降只需要设置learning_rate
值,这里设置为0.03。
:end_tab:
```{.python .input} from mxnet import gluon trainer = gluon.Trainer(net.collect_params(), ‘sgd’, {‘learning_rate’: 0.03})
```{.python .input}
#@tab pytorch
trainer = torch.optim.SGD(net.parameters(), lr=0.03)
```{.python .input}
@tab tensorflow
trainer = tf.keras.optimizers.SGD(learning_rate=0.03)
## 训练
通过深度学习框架的高级API来实现我们的模型只需要相对较少的代码。
我们不必单独分配参数、不必定义我们的损失函数,也不必手动实现小批量随机梯度下降。
当我们需要更复杂的模型时,高级API的优势将大大增加。
当我们有了所有的基本组件,[**训练过程代码与我们从零开始实现时所做的非常相似**]。
回顾一下:在每个迭代周期里,我们将完整遍历一次数据集(`train_data`),
不停地从中获取一个小批量的输入和相应的标签。
对于每一个小批量,我们会进行以下步骤:
* 通过调用`net(X)`生成预测并计算损失`l`(前向传播)。
* 通过进行反向传播来计算梯度。
* 通过调用优化器来更新模型参数。
为了更好的衡量训练效果,我们计算每个迭代周期后的损失,并打印它来监控训练过程。
```{.python .input}
num_epochs = 3
for epoch in range(num_epochs):
for X, y in data_iter:
with autograd.record():
l = loss(net(X), y)
l.backward()
trainer.step(batch_size)
l = loss(net(features), labels)
print(f'epoch {epoch + 1}, loss {l.mean().asnumpy():f}')
```{.python .input}
@tab pytorch
num_epochs = 3 for epoch in range(num_epochs): for X, y in data_iter: l = loss(net(X) ,y) trainer.zero_grad() l.backward() trainer.step() l = loss(net(features), labels) print(f’epoch {epoch + 1}, loss {l:f}’)
```{.python .input}
#@tab tensorflow
num_epochs = 3
for epoch in range(num_epochs):
for X, y in data_iter:
with tf.GradientTape() as tape:
l = loss(net(X, training=True), y)
grads = tape.gradient(l, net.trainable_variables)
trainer.apply_gradients(zip(grads, net.trainable_variables))
l = loss(net(features), labels)
print(f'epoch {epoch + 1}, loss {l:f}')
下面我们[比较生成数据集的真实参数和通过有限数据训练获得的模型参数]。
要访问参数,我们首先从net
访问所需的层,然后读取该层的权重和偏置。
正如在从零开始实现中一样,我们估计得到的参数与生成数据的真实参数非常接近。
```{.python .input} w = net[0].weight.data() print(f’w的估计误差: {true_w - d2l.reshape(w, true_w.shape)}’) b = net[0].bias.data() print(f’b的估计误差: {true_b - b}’)
```{.python .input}
#@tab pytorch
w = net[0].weight.data
print('w的估计误差:', true_w - d2l.reshape(w, true_w.shape))
b = net[0].bias.data
print('b的估计误差:', true_b - b)
```{.python .input}
@tab tensorflow
w = net.get_weights()[0] print(‘w的估计误差:’, true_w - d2l.reshape(w, true_w.shape)) b = net.get_weights()[1] print(‘b的估计误差:’, true_b - b) ```
小结
:begin_tab:mxnet
- 我们可以使用Gluon更简洁地实现模型。
- 在Gluon中,
data
模块提供了数据处理工具,nn
模块定义了大量的神经网络层,loss
模块定义了许多常见的损失函数。 - MXNet的
initializer
模块提供了各种模型参数初始化方法。 - 维度和存储可以自动推断,但注意不要在初始化参数之前尝试访问参数。 :end_tab:
:begin_tab:pytorch
- 我们可以使用PyTorch的高级API更简洁地实现模型。
- 在PyTorch中,
data
模块提供了数据处理工具,nn
模块定义了大量的神经网络层和常见损失函数。 - 我们可以通过
_
结尾的方法将参数替换,从而初始化参数。 :end_tab:
:begin_tab:tensorflow
- 我们可以使用TensorFlow的高级API更简洁地实现模型。
- 在TensorFlow中,
data
模块提供了数据处理工具,keras
模块定义了大量神经网络层和常见损耗函数。 - TensorFlow的
initializers
模块提供了多种模型参数初始化方法。 - 维度和存储可以自动推断,但注意不要在初始化参数之前尝试访问参数。 :end_tab:
练习
- 如果将小批量的总损失替换为小批量损失的平均值,你需要如何更改学习率?
- 查看深度学习框架文档,它们提供了哪些损失函数和初始化方法?用Huber损失代替原损失,即 $$l(y,y’) = \begin{cases}|y-y’| -\frac{\sigma}{2} & \text{ if } |y-y’| > \sigma \ \frac{1}{2 \sigma} (y-y’)^2 & \text{ 其它情况}\end{cases}$$
- 你如何访问线性回归的梯度?
:begin_tab:mxnet
Discussions
:end_tab:
:begin_tab:pytorch
Discussions
:end_tab:
:begin_tab:tensorflow
Discussions
:end_tab: