



#-*- coding: utf-8 -*-#数据规范化import pandas as pdimport numpy as npdatafile = '../data/normalization_data.xls' #参数初始化data = pd.read_excel(datafile, header = None) #读取数据(data - data.min())/(data.max() - data.min()) #最小-最大规范化(data - data.mean())/data.std() #零-均值规范化data/10**np.ceil(np.log10(data.abs().max())) #小数定标规范化
#-*- coding: utf-8 -*-#数据规范化import pandas as pddatafile = '../data/discretization_data.xls' #参数初始化data = pd.read_excel(datafile) #读取数据data = data[u'肝气郁结证型系数'].copy()k = 4d1 = pd.cut(data, k, labels = range(k)) #等宽离散化,各个类比依次命名为0,1,2,3#等频率离散化w = [1.0*i/k for i in range(k+1)]w = data.describe(percentiles = w)[4:4+k+1] #使用describe函数自动计算分位数w[0] = w[0]*(1-1e-10)d2 = pd.cut(data, w, labels = range(k))from sklearn.cluster import KMeans #引入KMeanskmodel = KMeans(n_clusters = k, n_jobs = 4) #建立模型,n_jobs是并行数,一般等于CPU数较好# kmodel.fit(data.reshape((len(data), 1))) #训练模型 # AttributeError: 'Series' object has no attribute 'reshape'kmodel.fit(data.values.reshape((len(data), 1))) #训练模型 c = pd.DataFrame(kmodel.cluster_centers_).sort_index(0) #输出聚类中心,并且排序(默认是随机序的)# w = pd.rolling_mean(c, 2).iloc[1:] #相邻两项求中点,作为边界点# AttributeError: module 'pandas' has no attribute 'rolling_mean' 旧版本问题w = c.rolling(2).mean().iloc[1:] #相邻两项求中点,作为边界点# c# Out[40]: # 0# 0 0.221695# 1 0.138327# 2 0.408679# 3 0.295406# w# Out[42]: # 0# 1 0.180011# 2 0.273503# 3 0.352043w = [0] + list(w[0]) + [data.max()] #把首末边界点加上# d3 = pd.cut(data, w, labels = range(k))# 这里k=4,w也有4d3 = pd.cut(data, w, labels = range(k)) #????def cluster_plot(d, k): #自定义作图函数来显示聚类结果 import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号 plt.figure(figsize = (8, 3)) for j in range(0, k): plt.plot(data[d==j], [j for i in d[d==j]], 'o') plt.ylim(-0.5, k-0.5) return pltcluster_plot(d1, k).show()cluster_plot(d2, k).show()cluster_plot(d3, k).show()