model.py 搭建神经网络架构
import torchfrom torch import nn# 搭建神经网络class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, 1, 2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64*4*4, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return xif __name__ == '__main__':tudui = Tudui()input = torch.ones((64, 3, 32, 32)) # 构造一个输入数据output = tudui(input)print(output.shape) # 测试模型的输出是否符合预期
train.py 模型训练
GPU 训练需要修改三个部分:
- 网络模型
- 数据(输入、标签)
- 损失函数
GPU 训练有两种修改方式:
**.cuda()**device = torch.device("cuda" if torch.cuda.is_available() else "cpu"),**.to(device)**```python import torch import torchvision from torch.utils.tensorboard import SummaryWriter
from model import *
准备数据集
from torch import nn from torch.utils.data import DataLoader
定义训练的设备
device = torch.device(“cuda” if torch.cuda.is_available() else “cpu”)
train_data = torchvision.datasets.CIFAR10(root=”../data”, train=True, transform=torchvision.transforms.ToTensor(), download=True) test_data = torchvision.datasets.CIFAR10(root=”../data”, train=False, transform=torchvision.transforms.ToTensor(), download=True)
length 长度
train_data_size = len(train_data) test_data_size = len(test_data)
如果train_data_size=10, 训练数据集的长度为:10
print(“训练数据集的长度为:{}”.format(train_data_size)) print(“测试数据集的长度为:{}”.format(test_data_size))
利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64) test_dataloader = DataLoader(test_data, batch_size=64)
创建网络模型
class Tudui(nn.Module): def init(self): super(Tudui, self).init() self.model = nn.Sequential( nn.Conv2d(3, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 64, 5, 1, 2), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(6444, 64), nn.Linear(64, 10) )
def forward(self, x):x = self.model(x)return x
tudui = Tudui() tudui = tudui.to(device) # 1. 将网络模型结构送入 GPU
损失函数
loss_fn = nn.CrossEntropyLoss() loss_fn = loss_fn.to(device) # 3. 将损失函数送入 GPU
优化器
learning_rate = 0.01
1e-2=1 x (10)^(-2) = 1 /100 = 0.01
learning_rate = 1e-2 optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)
设置训练网络的一些参数
记录训练的次数
total_train_step = 0
记录测试的次数
total_test_step = 0
训练的轮数
epoch = 10
添加tensorboard
writer = SummaryWriter(“../logs_train”)
for i in range(epoch): print(“———-第 {} 轮训练开始———-“.format(i+1))
# 训练步骤开始tudui.train()for data in train_dataloader:imgs, targets = dataimgs = imgs.to(device)targets = targets.to(device) # 2. 将数据(输入和标签)送入 GPUoutputs = tudui(imgs)loss = loss_fn(outputs, targets)# 优化器优化模型optimizer.zero_grad()loss.backward()optimizer.step()total_train_step = total_train_step + 1if total_train_step % 100 == 0:print("训练次数:{}, Loss: {}".format(total_train_step, loss.item()))writer.add_scalar("train_loss", loss.item(), total_train_step)# 测试步骤开始tudui.eval()total_test_loss = 0total_accuracy = 0with torch.no_grad():for data in test_dataloader:imgs, targets = dataimgs = imgs.to(device)targets = targets.to(device) # 2. 将数据(输入和标签)送入 GPUoutputs = tudui(imgs)loss = loss_fn(outputs, targets)total_test_loss = total_test_loss + loss.item()accuracy = (outputs.argmax(1) == targets).sum()total_accuracy = total_accuracy + accuracyprint("整体测试集上的Loss: {}".format(total_test_loss))print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size))writer.add_scalar("test_loss", total_test_loss, total_test_step)writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)total_test_step = total_test_step + 1torch.save(tudui, "tudui_{}.pth".format(i))print("模型已保存")
writer.close()
<a name="WLLbt"></a># test.py 模型测试/推理```pythonimport torchimport torchvisionfrom PIL import Imagefrom torch import nnimage_path = "../imgs/airplane.png"image = Image.open(image_path)print(image)image = image.convert('RGB')transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),torchvision.transforms.ToTensor()])image = transform(image)print(image.shape)class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, 1, 2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64*4*4, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return xmodel = torch.load("tudui_29_gpu.pth", map_location=torch.device('cpu'))print(model)image = torch.reshape(image, (1, 3, 32, 32))# 注意 eval 和 no_gradmodel.eval()with torch.no_grad():output = model(image)print(output)print(output.argmax(1))
