在学习pytorch时,编写如下代码运行报错
from __future__ import print_function, divisionimport torchimport torch.nn as nnimport torch.optim as optimfrom torch.optim import lr_schedulerimport numpy as npimport torchvisionfrom torchvision import datasets, models, transformsimport matplotlib.pyplot as pltimport timeimport osimport copyplt.ion() # interactive mode"""加载数据"""# 对训练集和验证集数据进行裁切和归一化data_transforms = {'train': transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),'val': transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),}data_dir = 'D:\\AAAAASunspots'image_datasets = {x: datasets.ImageFolder(os.path.join(os.path.join(data_dir, x), 'continuum'),data_transforms[x])for x in ['train', 'val']}dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=32,shuffle=True, num_workers=4)for x in ['train', 'val']}dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}class_names = image_datasets['train'].classesdevice = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')"""可视化部分图像数据"""def imshow(inp, title=None):"""Imshow for Tensor."""inp = inp.numpy().transpose((1, 2, 0))mean = np.array([0.5, 0.5, 0.5])std = np.array([0.5, 0.5, 0.5])inp = std * inp + meaninp = np.clip(inp, 0, 1) # 将元素大小限定在0和1之间plt.imshow(inp)if title is not None:plt.title(title)plt.pause(0.001) # pause a bit so that plots are updated# 获取一批训练数据inputs, classes = next(iter(dataloaders['train']))# 批量制作网格out = torchvision.utils.make_grid(inputs)imshow(out, title=[class_names[x] for x in classes])

错误分析:多进程要在main函数中才能运行
因此,可以将上述代码放到main函数中运行;或者将num_workers改为0,单进程加载。
参考:RuntimeError: An attempt has been made to start a new process before the current process…
