import numpy as npimport matplotlib.pyplot as plt# 生成模拟传感器数据(示例数据)sensor_data = np.random.randn(200) # 正态分布随机数据# 定义低通滤波函数def low_pass_filter(data, cutoff_freq): filtered_data = np.copy(data) for i in range(1, len(data)): filtered_data[i] = (1 - cutoff_freq) * filtered_data[i - 1] + cutoff_freq * data[i] return filtered_data# 设置截止频率cutoff_frequency = 0.2# 应用低通滤波filtered_sensor_data = low_pass_filter(sensor_data, cutoff_frequency)# 绘制原始数据和滤波后数据plt.figure(figsize=(10, 6))plt.plot(sensor_data)plt.plot(filtered_sensor_data)plt.show()
