一、 介绍
Logstash 是具有管道输送能力的开源数据收集引擎。它是一款日志而不仅限于日志的搜集处理框架,它可以动态地从分散的数据源收集数据,并且可以标准化数据格式输送到你选择的目的地。
二、 操作步骤
1.下载logstash(这里我放在/es目录下):[root@localhost es]# wget https://artifacts.elastic.co/downloads/logstash/logstash-7.3.2.tar.gz(注意:如果出现"-bash: wget: 未找到命令",则使用命令先安装wget: yum -y install wget)2.解压:[root@localhost es]# tar -zxvf logstash-7.3.2.tar.gz3.修改jvm内存(默认是1G,如果机器内存足够,这里可以不用更改)[root@localhost config]# vi jvm.options-Xms256m-Xmx256m4. 测试能不能运行,进入到/es/logstash-7.3.2/bin目录,然后执行命令:[root@localhost bin]# ./logstash -e 'input { stdin { } } output { stdout {} }'(注意:如果出现:Could not find any executable java binary. Please install java in your PATH or set JAVA_HOME.则需要先安装jdk)5. 安装 jdbc 和 elasticsearch 插件,ctrl+c取消运行然后分别输入以下命令:a.安装jdbc插件(这条命令要等好久。。。。):[root@localhost logstash-7.3.2]# bin/logstash-plugin install logstashinput-jdbcb.安装elasticsearch 插件:[root@localhost logstash-7.3.2]# bin/logstash-plugin install logstashoutput-elasticsearch6.准备mysql-connector-java驱动包,放到/es/logstash-7.3.2/config目录下7.在config目录下,编写同步配置文件 logstash.conf:
logstash.conf:
input {jdbc {type => "product"# mysql相关jdbc配置jdbc_connection_string => "jdbc:mysql://49.232.91.87:3306/ec-goods?useUnicode=true&characterEncoding=utf-8&serverTimezone=UTC"jdbc_user => "root"jdbc_password => "oracle!123"# jdbc连接mysql驱动的文件 此处路径一定要正确 否则会报com.mysql.jdbc.Driver could not be loadedjdbc_driver_library => "/es/logstash-7.3.2/mysql-connector-java-5.1.46.jar"# the name of the driver class for mysqljdbc_driver_class => "com.mysql.jdbc.Driver"# 开启分页查询jdbc_paging_enabled => truejdbc_page_size => "50000"# 同步SQL语句:# 如果要使字段和实体类的驼峰命名法一致则需要这样写:statement => "select id,name,description,price,stock,level1_id as level1Id,level2_id as level2Id,level3_id as level3Id,main_img as mainImg,sub_imgs as subImgs,status,create_time as createTime,update_time as updateTime from product where update_time >= :sql_last_value order by update_time asc"# 定制定时操作,比如每分钟执行一次同步(分 时 天 月 年)schedule => "* * * * *"#是否把大写字段名称全改成小写lowercase_column_names => "false"# 是否记录上次执行结果, 如果为真,将会把上次执行到的跟踪字段的值记录下来,保存到last_run_metadata_path 指定的文件中record_last_run => true# 是否需要记录某个字段的值,如果record_last_run为真,可以自定义我们需要跟踪的字段名称,此时该参数就要为 true. 否则默认跟踪的是 timestamp 的值.use_column_value => true# 如果 use_column_value 为真,需配置此参数.跟踪的数据库字段名,该字段必须是递增的. 如果字段使用了别名,这里需要使用别名tracking_column => "updateTime"#跟踪字段的类型tracking_column_type => "timestamp"# 最后更新时间文件位置last_run_metadata_path => "record_last_run_product"# 是否清除 last_run_metadata_path 的记录,如果为真那么每次都相当于从头开始查询所有的数据库记录clean_run => false}jdbc {type => "category"jdbc_connection_string => "jdbc:mysql://49.232.91.87:3306/ec-goods?useUnicode=true&characterEncoding=utf-8&serverTimezone=UTC"jdbc_user => "root"jdbc_password => "oracle!123"jdbc_driver_library => "/es/logstash-7.3.2/mysql-connector-java-5.1.46.jar"jdbc_driver_class => "com.mysql.jdbc.Driver"jdbc_paging_enabled => truejdbc_page_size => "50000"statement => "select id,name,parent_id as parentId,level,icon,status,create_time as createTime,update_time as updateTime from category where update_time >= :sql_last_value order by update_time asc"schedule => "* * * * *"lowercase_column_names => "false"record_last_run => trueuse_column_value => truetracking_column => "updateTime"tracking_column_type => "timestamp"last_run_metadata_path => "record_last_run_category"clean_run => false}}output {if [type] == "product" {elasticsearch {hosts => ["192.168.180.110:9200"]# index名 自定义相当于数据库index => "product"#需要关联的数据库中有一个id字段,对应索引的id号document_id => "%{id}"}}if [type] == "category" {elasticsearch {hosts => ["192.168.180.110:9200"]# index名 自定义相当于数据库index => "category"#需要关联的数据库中有一个id字段,对应索引的id号document_id => "%{id}"}}# 这里输出调试,正式运行时可以注释掉stdout {codec => json_lines}}
9.启动logstash,进入到/es/logstash-7.3.2目录:[root@localhost logstash-7.3.2]# ./bin/logstash -f ./config/logstash.conf(注意:如果报"Expected one of #,input,filter,output at line 1,column 1(byte1)after"错误,则把配置文件改为UTF-8无BOM模式即可)UTF-8+BOM10.设置logstash同步mysql数据到es使用ik中文分词器只需在同步前在kibana创建索引设置对应中文字段的分词器为ik_max_word即可测试IK分词是否可用:get _analyze{"analyzer":"ik_max_word","text":"中华人民共和国"}
三、测试
#设置index中文字段为ik分词器#查看索引mapping(结构映射)get product/_mappingget category/_mapping#添加索引put productput category#设置索引mapping(结构映射)post product/_mapping{"properties" : {"@timestamp" : {"type" : "date"},"@version" : {"type" : "text","fields" : {"keyword" : {"type" : "keyword","ignore_above" : 256}}},"createTime" : {"type" : "date"},"description" : {"analyzer" : "ik_max_word","type" : "text","fields" : {"keyword" : {"type" : "keyword","ignore_above" : 256}}},"id" : {"type" : "long"},"level1Id" : {"type" : "long"},"level2Id" : {"type" : "long"},"level3Id" : {"type" : "long"},"mainImg" : {"analyzer" : "ik_max_word","type" : "text","fields" : {"keyword" : {"type" : "keyword","ignore_above" : 256}}},"name" : {"analyzer" : "ik_max_word","type" : "text","fields" : {"keyword" : {"type" : "keyword","ignore_above" : 256}}},"price" : {"type" : "float"},"status" : {"type" : "long"},"stock" : {"type" : "long"},"type" : {"analyzer" : "ik_max_word","type" : "text","fields" : {"keyword" : {"type" : "keyword","ignore_above" : 256}}},"updateTime" : {"type" : "date"}}}post category/_mapping{"properties" : {"@timestamp" : {"type" : "date"},"@version" : {"type" : "text","fields" : {"keyword" : {"type" : "keyword","ignore_above" : 256}}},"createTime" : {"type" : "date"},"icon" : {"analyzer" : "ik_max_word","type" : "text","fields" : {"keyword" : {"type" : "keyword","ignore_above" : 256}}},"id" : {"type" : "long"},"level" : {"type" : "long"},"name" : {"analyzer" : "ik_max_word","type" : "text","fields" : {"keyword" : {"type" : "keyword","ignore_above" : 256}}},"parentId" : {"type" : "long"},"status" : {"type" : "long"},"type" : {"analyzer" : "ik_max_word","type" : "text","fields" : {"keyword" : {"type" : "keyword","ignore_above" : 256}}},"updateTime" : {"type" : "date"}}}#删除last_run_metadata_path文件,启动logstash重新同步数据
